

Few-Shot Learning by Dimensionality Reduction in Gradient Space

Maximilian Beck
PhD Seminar Talk

Paper by Martin Gauch, Maximilian Beck, Thomas Adler, Dmytro Kotsur, Stefan Fiel, Hamid Eghbal-zadeh, Johannes Brandstetter, Johannes Kofler, Markus Holzleitner, Werner Zellinger, Daniel Klotz, Sepp Hochreiter, Sebastian Lehner

Agenda

- Introduction
- Problem Setup: Few-shot learning
- Method: Subspace Gradient Descent
- Experiments
- Summary

Motivation

- Deep learning needs a lot of data to succeed
- If a large amount of data is available:
 Deep learning often outperforms other methods or even humans

- For many real world applications there is often not enough data available
 - Examples: Industrial Applications, Autonomous Driving, Environment Modeling
- · Gives rise to the research areas such as Few-shot- and Meta-learning

Supervised- vs. Meta-Learning

(Hospedales et al., 2020)

Model:
$$\hat{y} = f_{\theta}(x), \ \theta \in \mathbb{R}^d$$

Across-task-/Meta-knowledge: ω

Data distribution: $\mathcal{D}_{train}, \ \mathcal{D}_{test} \sim p(x,y)$

$$\mathcal{D}_* = \{(x_1, y_1), ..., (x_N, y_N)\}\$$

Training:

$$\theta^* = \arg\min_{\theta} \mathcal{L}(\mathcal{D}_{train}; \theta, \omega)$$

Testing:

$$\mathcal{L}(\mathcal{D}_{test}; \theta^*, \omega)$$

Task distributions: $p_{train}(\mathcal{T}), p_{test}(\mathcal{T})$

$$\mathcal{T}_i \sim p_*(\mathcal{T}) \ \mathcal{T}_i = \{\mathcal{D}_*, \mathcal{L}\} \ \mathcal{D}_* = \{\mathcal{D}_*^{support}, \mathcal{D}_*^{query}\}$$

Meta-training:

$$\omega^* = \arg\min_{\omega} \mathop{\mathbb{E}}_{\mathcal{T} \sim p_{train}(\mathcal{T})} \mathcal{L}(\mathcal{D}^*_{train}, \omega)$$

Meta-testing:

$$\theta^{*(i)} = \arg\min_{\theta} \mathcal{L}(\mathcal{D}^{support}_{test,(i)}; \theta, \omega^{*})$$
$$\mathcal{L}(\mathcal{D}^{query}_{test,(i)}; \theta^{*(i)}, \omega^{*})$$

Few-shot Learning

- Typical example: Few-shot image classification
- N-way K-shot scenario: support set consists of N classes with K images each
- In our paper we consider predictions of dynamical systems behavior
- Support and query set are short sequences of system behavior, different tasks are different systems (more on this later)

(Ravi et al., 2017)

Subspace Gradient Descent (SubGD) (I)

Motivation:

- Gradient descent happens in a small subspace. (Li et al., 2018; Gur-Ari et al., 2018)
- Restricting learning to certain low-dimensional subspaces does not deteriorate performance, and can even improve performance in case of "lottery subspaces". (Larsen et al., 2022)
 - "Lottery subspaces": Subspace consists of the top r principal components of an entire training trajectory for a single task

Hypothesis:

 A subspace shared across different Few-shot learning tasks might lead to better sample efficiency and generalization on new tasks

Subspace Gradient Descent (SubGD) (II)

Idea:

- Restrict gradient descent to a r dimensional subspace that is learned during meta-training.
- Modify update rule:

• SGD:
$$\theta \leftarrow \theta - \eta g$$

• SubGD:
$$\theta \leftarrow \theta - \eta C g, \ C = P S P^{\top}$$

• Preconditioning matrix C can be decomposed:

• Projection matrix: $P \in \mathbb{R}^{d \times r}$

• Scaling Matrix: $S \in \mathbb{R}^{r \times r}$

Stochastic Gradient:

$$g = \nabla_{\theta} \frac{1}{|\mathcal{B}|} \sum_{x,y \in \mathcal{B}} \mathcal{L} \left(f_{\theta}(x), y \right)$$

Neural Network Parameters: $\theta \in \mathbb{R}^d$

Learning rate: η

Subspace Gradient Descent (SubGD) (III)

How do we construct the subspace, i.e. the matrices P and S?

- Subspace consists of the top r principal components of the fine-tuning trajectories on meta-train tasks.
- In practice: We compute P and S by an Eigendecomposition of the (uncentered) covariance matrix consisting of the weight differences between initialized and finetuned models. (will be explained in more detail on the next slide)
 - P are the eigenvectors corresponding to the top r eigenvalues of the covariance matrix.
 - S is a diagonal matrix with the top r eigenvalues of the covariance matrix on its diagonal.
- Important subspace directions get higher weight, due to scaling matrix S

Subspace Gradient Descent (SubGD) (IV)

Training procedure:

Meta-training

Pretraining

Supervised, MAML / Reptile, Random

Gridsearch

learning rate and number of update steps

Meta-testing

Evaluate performance of optimal meta-parameters

$$\omega^* = \{\theta_{init}, P, S, \eta, N_{steps}\}$$
 on test tasks.

 θ_{init}

P, S

 η, N_{steps}

Summary of Ablations on Sinusoid

- SubGD can be applied to different pre-trained initializations
 - Examples: Random initialization, Supervised pre-training, Meta-learned initializations
 - Meta-learned initializations perform better than random or supervised pre-trained initializations
 - SubGD can benefit from this
- SubGD chooses the effective subspace dimensionality by weighting with eigenvalues
 - No tuning of the subspace dimension necessary
- SubGD's subspace based on PCA of the update directions outperforms simpler subspace variants
 - Examples: Random directions, Diagonal preconditioning

Limitations

- We expect SubGD to work, when...
 - the test tasks are not too different from the training tasks (they share some common structure)
 - a shared subspace on the training tasks can be found with gradient descent

Mini-Imagenet

Sinusoid

Non-linear RLC

Non-linear RLC – Experiment Setup

• Electrical circuit consisting of resistance R, inductance L(i), and capacitance C

Generate train and test tasks by sampling random parameter

values for R, L and C

- Generate ground-truth data by simulating the system behaviour of each parameter combination for random input signals
- Goal: Learn a model that predicts the output voltage given the input voltage
 - Problem of System Identification

Output voltage of 50 different test systems

Non-linear RLC – Experiment Results

Median MSE over 256 test tasks for different support sizes and pretraining strategies:

MetaSGD and Meta-Curvature also employ preconditioning

Method	10-shot	20-shot	30-shot	50-shot	70-shot	100-shot
MetaSGD	0.072	0.048	0.035	0.021	0.023	0.022
Meta-Curvature	0.062	0.038	0.029	0.020	0.018	0.017
Reptile+SubGD	0.054	0.033	0.022	0.017	0.015	0.015

Summary

- Comparison between Supervised- and Meta-learning setting
- Few-shot learning setting
- Subspace Gradient Descent
- Experiment results on the RLC dataset

References

- Hospedales, Timothy, Antreas Antoniou, Paul Micaelli, and Amos Storkey. "Meta-Learning in Neural Networks: A Survey." *ArXiv:2004.05439 [Cs, Stat]*, November 7, 2020. http://arxiv.org/abs/2004.05439.
- Larsen, Brett W., Stanislav Fort, Nic Becker, and Surya Ganguli. "How Many Degrees of Freedom Do We Need to Train Deep Networks: A Loss Landscape Perspective." *ArXiv:2107.05802 [Cs, Stat]*, February 3, 2022. http://arxiv.org/abs/2107.05802.
- Li, Chunyuan, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. "Measuring the Intrinsic Dimension of Objective Landscapes." arXiv, April 24, 2018. http://arxiv.org/abs/1804.08838.
- Gur-Ari, Guy, Daniel A. Roberts, and Ethan Dyer. "Gradient Descent Happens in a Tiny Subspace." arXiv, December 11, 2018. http://arxiv.org/abs/1812.04754.
- Ravi, Sachin, and Hugo Larochelle. "OPTIMIZATION AS A MODEL FOR FEW-SHOT LEARNING," 2017, 11.
- Forgione, Marco, and Dario Piga. "Continuous-Time System Identification with Neural Networks: Model Structures and Fitting Criteria." *European Journal of Control* 59 (May 2021): 69–81. https://doi.org/10.1016/j.ejcon.2021.01.008.
- Forgione, Marco, Aneri Muni, Dario Piga, and Marco Gallieri. "On the Adaptation of Recurrent Neural Networks for System Identification." arXiv, January 21, 2022. https://doi.org/10.48550/arXiv.2201.08660.

Non-linear RLC - Details

System equation of the RLC curcuit:

$$\begin{pmatrix} \dot{v}_C(t) \\ \dot{i}_L(t) \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{C_R} \\ -\frac{1}{L(i_L)} & -\frac{R}{L(i_L)} \end{pmatrix} \begin{pmatrix} v_C(t) \\ i_L(t) \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1}{L(i_L)} \end{pmatrix} v_{in}(t)$$

Non-linear inductance:

$$L(i_L) = L_0 \left[0.9 \left(\frac{1}{\pi} \arctan(-5|i_L| - 5) + 0.5 \right) + 0.1 \right]$$

Approximate dynamical system:

$$\dot{\hat{x}} = f_{\theta}(\hat{x}, u)$$

$$\hat{x}(t;\theta,x_0) = \text{ODEINT}(t,f_{\theta}(\cdot,\cdot),u(\cdot),x_0)$$

Sinusoid Results (I)

Comparison of different pre-training strategies for SubGD

Sinusoid Results (II)

Performance of SubGD for different subspaces, i.e. different construction mechanisms of the projection matrix

