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1 Motivation

The widespread adoption of Large Language Models (LLMs) is transforming fields ranging from
healthcare [12, 20] and education [35] to software development [20] and customer service, while
also changing how we search for information, communicate, and manage our everyday tasks. As
LLMs are applied to more and more areas, the computational and energy demands on both training
and inference continue to grow [8]. Training requires ever greater computational power as context
lengths grow, models scale up, and training dataset size rises, while inference must remain fast and
affordable across cloud platforms and edge devices. These challenges highlight the need for archi-
tectures that can deliver efficiency without sacrificing performance, even under resource constraints.

The backbone of most of todays LLMs is the Transformer architecture which processes and gener-
ates text as a sequence of tokens, where each token consists of one or several characters [34]. At its
core the Transformer architecture relies on the self-attention mechanism, which captures long-range
dependencies and contextual relationships by computing pairwise interactions between all tokens
in the sequence. This leads to quadratic scaling in compute and linear scaling in memory with re-
spect to the sequence length, as all tokens must be stored in memory for the attention computation.
In scenarios with very long sequences or resource constraints the self-attention mechanism creates
significant challenges.

In contrast, traditional recurrent neural networks (RNNs), such as the Long Short-Term Memory
(LSTM) [13, 15, 16] process sequences in a step-by-step manner and thus exhibit only linear com-
plexity with respect to the sequence length. LSTMs control the error and information flow using
a gating mechanism that consists of input, forget and output gates. In combination, these gates
maintain and update a fixed memory state at each time step, effectively compressing the history of
the past inputs into a constant-size memory. LSTMs have been successfully applied in various do-
mains [17, 14, 28], are still widely used in highly relevant applications [23], and have been even used
for early language models [21]. However, due to their sequential nature, traditional RNNs are inher-
ently less parallelizable and hence less efficient during training compared to Transformers, which
can process all tokens simultaneously. This limited the scalability of early LSTM-based language
models and paved the way for the emergence of the Transformer architecture in language modeling.

My thesis aims to overcome the challenges of current Transformer architectures by developing new
recurrent neural network architectures that combine the benefits of both – RNNs’ linear scaling with
sequence length and low memory requirements, with Transformers’ parallel training and strong
performance on natural language tasks. In [a], we introduce the xLSTM a new RNN architecture
with exponential gating and a new scalar and matrix memory structure and show that the xLSTM
performs favorably when compared to state-of-the-art Transformers and State Space Models, both
in performance and scaling. In [b], we develop Tiled Flash Linear Attention (TFLA) a new efficient
hardware-aware kernel algorithm for the xLSTM with matrix memory, enabling large scale training
of xLSTM models. In [c], we introduce a 7 billion parameter xLSTM LLM that leverages the fast
xLSTM TFLA kernels and combines xLSTM’s architectural benefits with targeted optimizations for
fast end efficient inference.
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2 Approaches & Results

This thesis is dedicated to establish RNNs as a competitive alternative to the Transformer archi-
tecture for LLMs, in order to overcome the computational and memory challenges posed by the
quadratic self-attention mechanism. We approach this goal from three angles: [a] Novel RNN ar-
chitectures that combine the strengths of LSTMs and Transformers, [b] Hardware-aware algorithms
and implementations for efficient training of large scale RNNs, and [c] Scaling RNN models to
billions of parameters and optimizing them for fast and efficient inference.

xLSTM Architecture. Despite their tremendous successes, the original LSTM has three main
limitations: (1) Inability to revise storage decisions, (2) Limited storage capacity, (3) Lack of par-
allelizability, which results in training inefficiencies at large scale. To overcome these limitations,
the Extended Long Short-Term Memory (xLSTM) introduces two key innovations: (i) Exponential
Gating, which allows the model to revise its storage decisions over time, and (ii) a dual memory
system consisting of the sLSTM, a scalar memory cell, with scalar update rule and memory mixing
– and the mLSTM, a matrix memory, with outer product update rule and full parallelizability. By
integrating these memory cells into residual blocks, and stacking multiple such blocks, we obtain
the xLSTM architecture. In [a], we demonstrate the effectiveness of the xLSTM architecture on syn-
thetic benchmarks, as well as on real-world language modeling tasks, where it outperforms compa-
rable Transformers architectures [32], State Space Models [11] and other RNNs [36, 31, 24, 25, 27]
in terms of both performance and scaling.

Hardware-aware Algorithms & Implementations for Linear RNNs. Even though RNNs’ lin-
ear scaling in compute and constant memory requirements of RNNs such as the xLSTM offer the-
oretical advantages over Transformers, realizing these benefits in practice requires hardware opti-
mized algorithms and implementations, because Transformers rely on the highly optimized Flash
Attention kernels [6, 5, 30]. To overcome this issue, we introduce Tiled Flash Linear Attention
(TFLA) in [b], a new algorithm for efficient training of linear RNNs such as the mLSTM. TFLA
combines chunkwise parallel training [36, 37] with a novel tiling stategy of the matrix computa-
tions in sequence dimension in order to fully leverage the memory hierarchy of modern hardware.
Our benchmarks show that our mLSTM kernels based on TFLA achieve significant improvements
in memory consumption and runtime compared to previous linear RNN or highly optimized Flash
Attention kernels.

Scaling up xLSTM models. So far in [a], xLSTM models have been scaled up to 1.4B parameters.
However, many widely used open-source LLM models use at least 7B parameters [32, 33, 10, 19].
Therefore, in order to demonstrate the competitive performance of xLSTM models at scale, we
scale up the xLSTM architecture to 7B parameters in [c]. For this, we leverage the fast TFLA
mLSTM kernels from [b], and further optimize the xLSTM architecture for high training efficiency
and stability, as well as for fast and efficient inference. Specifically, the new xLSTM 7B architecture
fully relies on mLSTM cells with parallel training mode and placed in optimized mLSTM blocks.
The optimizations include adapting the mLSTM memory dimension and (re-)adding position-wise
feedforward MLP layers. We find that the resulting xLSTM 7B architecture with the modified block
design achieves a 2× to 4× higher token throughput compared to the previous xLSTM block design.
In our evaluations on language downstream and long context tasks, xLSTM 7B shows comparable
performance to Transformers and Mamba models of the same size, while achieving the highest
prefill and generation throughput with the lowest GPU memory footprint on our inference efficiency
benchmarks.

2.1 Future Work

Scaling Laws of xLSTM models. Scaling laws play a central role in guiding the development of
LLMs, by providing guidance on model parameter and dataset size allocation, as well as architecture
design choices – so far mainly for Transformer based architectures [22, 18]. In [d], we are currently
investigating the scaling properties of xLSTM across several dimensions and orders of magnitude,
aiming to provide a rigourous empirical foundation for future xLSTM model development as well
as insights into the differences between xLSTM and Transformer scaling.
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3 Contributions

The following list presents the papers that I authored either as single first or shared first author and
that will form the main part of my thesis:

[a] xLSTM: Extended Long Short-Term Memory. NeurIPS, 2024 [4].

[b] Tiled Flash Linear Attention: More Efficient Linear RNN and xLSTM Kernels. Under
Review, Arxiv, 2025 [3].

[c] xLSTM 7B: A Recurrent LLM for Fast and Efficient Inference. International Conference
on Machine Learning (ICML), 2025 [2].

Work in progress:

[d] xLSTM Scaling Laws: Competitive Performance with Linear Time-Complexity

The following list presents additional papers that I (co-)authored, including my contributions:

1. FlashRNN: Optimizing Traditional RNNs on Modern Hardware. International Conference
on Learning Representations (ICLR), 2025. [26]
Contribution: I implemented the FlashRNN sLSTM and LSTM Triton kernels. I set up and
conducted the speed experiments and presented the results in the paper.

2. Vision-LSTM: xLSTM as Generic Vision Backbone. International Conference on Learn-
ing Representations (ICLR), 2025. [1]
Contribution: I provided the core mLSTM implementation.

3. A Large Recurrent Action Model: xLSTM enables Fast Inference for Robotics Tasks. In-
ternational Conference on Machine Learning (ICML), 2025. [29]
Contribution: I contributed the fast Triton inference kernels, and provided feedback on the
manuscript.

4. Addressing Parameter Choice Issues in Unsupervised Domain Adaptation by Aggregation.
International Conference on Learning Representations (ICLR), 2023. [7]
Contribution: I developed the implementation and source code of our method IWA as well
the baselines. I conducted experiments and presented the results in the paper.

5. Few-Shot Learning by Dimensionality Reduction in Gradient Space. Conference on Life-
long Learning Agents (CoLLAs), 2022. [9]
Contribution: I conducted experiments and provided baseline implementations. I con-
tributed to the writing of the experiments section.

Impact. To date, my research has been cited 644 times as reported by Google Scholar.1 The open
source xLSTM GitHub repository of which I am core contributor has more than 2k stars and the
mLSTM TFLA Triton kernels repository has 68 stars.2. The xLSTM architecture and technology is
being developed further by NX-AI, a spin-off company of JKU Linz.

Invited Talks. Besides internal presentations at the Institute for Machine Learning at JKU Linz,
I have been invited 13 times during my PhD to present my research at universities (FAU Erlangen-
Nuremberg, KIT Karlsruhe ALR, Ruhr-University Bochum), industry research labs (Meta, Google
Research, ISTA, G-Research), and industry conferences (Machine Learning Week Europe).3

Miscellaneous:

• Part of the ELLIS PhD Program

• Internship at Meta FAIR in Paris from May to October 2025

• Reviewer for NeurIPS-2024, ICLR-2025, ICML-2025, NeurIPS-2025

1 Google Scholar 2 xLSTM repo, TFLA repo 3 Full List of Talks
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