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Abstract

Autonomous vehicles operate in complex environments. In fact, due to limited sensor
range, noisy sensor data, occlusions, or unknown intentions of close-by human drivers, the
environment is highly uncertain and only partially observable. Motion planning algorithms
must tackle these challenges to generate safe and human alike behavior for automated
vehicles. In this thesis, the motion planning problem is modeled as partially observable
Markov decision process (POMDP), considering intended routes of other vehicles as a
hidden state variable in the state space. This POMDP is then solved with a Monte-
Carlo tree search based online solver, which uses weighted particle filter updates for state
estimation and tree search. The particle filter weights are calculated based on features
that effectively combine map information with true or simulated observations of the scene.
In this way the planner is able to infer the intentions of other drivers online and directly
uses this knowledge for subsequent planning steps. The algorithm will then be evaluated
on interactive urban intersection scenarios (e.g. roundabout scenarios) with real driving
data.





Kurzfassung

Autonome Fahrzeuge werden in sehr komplexen Umgebungen betrieben. Aufgrund von
begrenzter Sensorreichweite, verrauschten Sensordaten, Verdeckungen oder unbekannten
Intentionen von anderen menschlichen Fahrern sind diese Umgebungen sehr unsicher und
nicht vollständig beobachtbar. Bewegungsplaner müssen mit diesen Herausforderungen
umgehen, um ein sicheres und dem Menschen sehr ähnliches Fahrverhalten zu gener-
ieren. In dieser Arbeit wird deshalb das Bewegungsplanungsproblem als einen teilweise
beobachtbaren Markov Entscheidungsprozess (POMDP) modelliert, bei dem die beab-
sichtigte Route von anderen Fahrzeugen die nicht-beobachtbare Variable im Zustandsraum
ist. Dieses POMDP wird dann mit einem Algorithmus gelöst, der auf Monte-Carlo Baum-
suche basiert und einen gewichteten Partikelfilter sowohl für die Zustandsschätzung als
auch für die Baumsuche verwendet. Die Partikelgewichte werden dann mit Merkmalen
berechnet, die simulierte oder wirkliche Beoabachtungen der Verkehrsszene mit Karten-
informationen kombinieren. Auf diese Weise ist der POMDP Planer im Stande von den
Beobachtungen online auf die Intention von anderen Fahrern zu schließen und das so
gewonnene Wissen direkt für nachfolgende Planungsschritte zu nutzen. Die Evaluation
des POMDP Planers erfolgt dann in interaktiven, urbanen Kreuzungsszenarien (wie z.B.
einem Kreisverkehr) mit aufgezeichneten Verkehrsdaten.
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1. Introduction

1.1. Motivation

In recent years, the development of more and more sophisticated Advanced Driver As-
sistance Systems (ADAS) has increased the level of autonomy in driving. Those systems
are aimed to increase safety and comfort, but still require fully attentive human drivers.
However, in specific operational design domains (ODD) such as on highways it is possible
that the car takes over control and the driver will be notified only in those situations
were manual control is needed [Ros17]. According to the SAE taxonomy, this is defined
as level 3 out of six levels of driving automation, ranging from no automation (level 0)
to full driving automation (level 5) [SAE14]. So far those systems — even if technically
feasible and mature, have not been deployed on the roads because of legal issues. Those
issues have been resolved with the adoption of an international regulation for automated
lane keeping systems (ALKS) by the United Nations Economic Commission for Europe
(UNECE) which becomes effective in 2021 [Dil20] and allows level 3 autonomous driving
on highways.

Current research and development focuses on level 4 or higher autonomous cars which are
capable of handling complex urban environments with multiple pedestrians, bicycles and
other vehicles in near-collision scenarios. The goal is to design a system, which shows a
human-like driving style in urban traffic along with regular human-driven vehicles. Such
autonomous cars may have a high impact on people’s life, not only due to an increase in
comfort and efficiency in driving, but also due to a significant reduction in the number of
accidents and deaths in traffic. Moreover, the potential availability of fully autonomous
transportation systems enables completely new opportunities for mobility solutions.

For designing Automated Driving Systems (ADS), a general approach is to divide the
driving problem in several subproblems and solve each subproblem separately. The result
is a model- or system-based approach in which each module defines an interface to other
modules, processes the input data and provides data for the next module. The information
flow of this approach from the sensors (e.g. Lidar, Cameras, Radar, etc.) that perceive the
environment to the actors (e.g. steering, brake, throttle) that manipulate the state of the
vehicle is depicted in Figure 1.1(a). This is a typical pipeline that starts with feeding raw
sensor inputs to localization and object detection modules, followed by behavior prediction
and a planning or decision-making module. At last, the control module generates motor
commands for the actors based on the planned behavior of the ego-vehicle.
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Figure 1.1.: Information flow diagrams of two different approaches to automated driving:
(a) Model-based approach, (b) End-to-end learning approach
(from [YLCT20]).

Another approach is to use End-to-end driving methods, that learn human-style driving by
either direct supervised deep learning where the training data is generated with an expert
human-driver or deep reinforcement learning which learns the optimal way of driving by
receiving reward signals from interacting with the world depending on the quality of the
selected actions. Those systems generate actions for the ego-vehicle directly from sensory
inputs as can be seen in Figure 1.1(b). One drawback of this approach is the huge amount
of training data necessary to train those models, since the training-data should contain as
many edge cases as possible. However, it is impossible to record all edge cases for training,
and it cannot be guaranteed that the learned models generalize to situations which could
not be included in the training data. Hence, with this approach, urban driving has not
been achieved so far [YLCT20].

In contrast, the technical feasibility of automated driving in urban environments with
the modular approach has been shown with various experimental vehicles in recent years
(e.g. [ZBS+14]). However, their driving style is still very different from human drivers
and is often described as overly defensive or conservative. The reason for this is that
autonomous cars have to deal with many uncertainties resulting from sensor noise or
range limitations in perception, from uncertain prediction due to hidden or unobservable
variables (e.g. intentions or goals of other drivers) or from unknown possible interaction
of other traffic participants with the ego-vehicle. To maintain safety, optimization-based
motion planners avoid taking risky actions in those ambiguous scenarios, since they do
not plan with uncertain information [ZBDS14]. More recent approaches try to consider
uncertainties in the optimization-based planning approaches [TS18]. However, the result
is often a rule-based behavior, which depends on different maneuver options in an urban
scenario.

1.2. Goal Description

In this thesis, the focus lies on behavior generation of the ego-vehicle by using motion
planning techniques that take the aforementioned uncertainties into account, without in-
cluding any prior knowledge in form of behavior rules. Hence, the framework of Partially
Observable Markov Decision Processes (POMDPs), which is well-known for sequential
decision-making under uncertainty, will be used to model the driving scenarios. Instead of
planning with the current state of the world (e.g. state of the ego- and all other vehicles)
and its prediction obtained from the prediction module, POMDPs allow planning with
the current belief state, which is a probability distribution about all possible states. The
uncertainty of the belief state is reflected in the shape of the distribution, such that if the
belief is distributed uniformly over many possible states, i.e. several states are equally
likely, the planning algorithm is uncertain about its environment.
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In order to generate feasible behavior for the automated vehicle even in such a case, the
online POMDP solver uses its internal POMDP model and multiple random simulations
to determine how the environment and ego-vehicle might evolve and selects a motion
plan, which is optimal according to a prespecified reward model. The result is a POMDP
planner, which integrates prediction and planning into a single, combined problem.

Hence, the first goal of this thesis is to formulate a POMDP model, that takes the afore-
mentioned uncertainties in the environment of automated vehicles into account and when
solved provides a feasible and interactive solution to the motion planning problem for
urban scenarios.

The second goal is to provide an algorithm that is capable to compute a solution to this
POMDP online and in near real-time.

Contribution

Within these goals, the first contribution of this work is a real-time capable software
framework written in C++ and Python for solving POMDPs online. This framework uses
an online MCTS algorithm applicable to POMDPs with continuous state and observation
spaces and allows to actively consider the value of information for decision-making [FT20].

The second contribution is the extension of a POMDP model formulation from previous
research [HSB+18]. It is extended to support dynamic map changes in every time step
and a more sophisticated motion and interaction model for the other vehicles is used.
Moreover, the novel POMDP model improves intention estimation of other drivers and is
adapted for the use with weighted particle filters and the Particle Filter Tree algorithm.

Finally, the framework is used to compute policies for the novel POMDP model and the
resulting POMDP motion planner is evaluated. It is demonstrated, that the planner is
able to plan for sufficiently long horizons in near real-time and the impact of important
parameters on solution quality and runtime is investigated.

Limitation

The online POMDP solver used in this thesis and the software framework supports be-
lief dependent rewards, such as rewards based on information gain. Even though it is
supported and a promising idea, so far no belief dependent rewards, and hence no active
information gathering is implemented for the driving POMDP model.

The reason is, that for this, the question of how the belief dependent rewards could be
calculated must be addressed. As the state space of the POMDP model includes various
unrelated variables (e.g. the route intentions or positions of different other vehicles), this
is not a trivial task, since it is not clear based on which quantity the rewards could be
calculated. The method presented in previous works to compute the negative entropy
from weighted particle sets based on kernel density estimation (KDE) cannot be applied
in a straight-forward way [FT20]. Thus, including belief dependent rewards based on
information measures is left for future work.

1.3. Outline

The remainder of this work is structured as follows: Chapter 2 introduces the fundamen-
tals of decision making and state estimation. The section of state estimation focuses on
particle filters since they are the method of choice for updating the belief state in POMDP
solvers. Subsequently, in Chapter 3 at first the most important offline algorithms for solv-
ing POMDPs are explained, before then state of the art MCTS based online solvers are
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introduced. After that, Chapter 4 presents the Information Particle Filter Tree (IPFT)
algorithm, which is used for the experiments in this work. In Chapter 5, the planning
problem is stated, the POMDP formulation is explained and some implementation details
are highlighted. Then, the POMDP planner is evaluated in a simulation environment and
the results are presented in Chapter 6. Finally, the work is concluded and future research
directions are given in Chapter 7.



2. Fundamentals of Decision Making and
State Estimation

In this chapter, the mathematical formulation of a sequential decision-making problem in
a stochastic environment is addressed. Sequential decision-making means, that based on
the state (e.g., the velocity or position) an agent (e.g., the ego vehicle) is in, it needs to
select or decide for an action in order to transition to the next state multiple times in a
row. Regarding automated driving, the actions could be acceleration values or steering
angles for example.

The stochastic fashion of the environment comes in when the same action in the same
state does not always, but only in probability, yield the same result state. If this state is
fully observable to the agent, the problem can be modelled as Markov Decision Process
(MDP), which will be explained in more detail in section 2.1.
Many times the current state of the world is not fully observable, which means that some
state variables cannot be directly measured, but can only be inferred from the history of
states, as it is the case for the intentions of other drivers for example. Then, the MDP
can be extended to a Partially Observable Markov Decision Process (POMDP), where
the agent does not know exactly in which state it is, but only receives observations from
the world which may let the agent draw conclusions about the true, unobservable state.
Section 2.2 will deal with the latter case of state uncertainty.
For a more in-depth introduction to the topic, the reader is referred to [RN10], [Koc15]
and [TBF06].

2.1. Markov Decision Processes

In a MDP an agent chooses an action at based on the state st at time t. After receiving
a reward rt according to the reward model R(st, at), the probability of transitioning to a
specific successor state st+1 is given by the transition model T (st+1|st, at). It is hereby
assumed, that the next state only depends on the current state and action and not on any
previous state or action. This is called the Markov assumption or property.
To sum up, a MDP consists of the following components:

• S, S: A state space S or set of states S, with s0 being the initial state.

• A,A: An action space A or a set of actions A.

• T (st+1|st, at): A transition model that determines the probability of reaching state
st+1 given that action at is chosen in state st.
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Figure 2.1.: Probabilistic graphical model of a Markov decision process (from [Koc15,
p.78]).

• R(st, at): A reward function returning the current reward for taking at in state st.

Figure 2.1 shows a Markov decision process in a decision diagram. States are depicted
as circles, actions as squares and rewards as diamonds. With the above definition of the
components, a MDP is defined as the 5-tuple (S,A, T ,R, γ), where γ is the discount factor
as explained in the next paragraph.

Policy and Value

According to the formulation of an MDP, the goal of an agent is clearly to choose actions,
which yield a high reward. But how can such a solution, which (often) results in high
rewards, be represented?
A deterministic plan, i.e. a specific action sequence from the start state is not suitable, since
state transitions happen stochastically. That means that the same action sequence can
result in completely different state sequences, and hence in completely different rewards.
Therefore, a solution to an MDP is called a policy (one could also say a reactive plan),
which determines which action an agent chooses in each state at time t:

at = π(st) (2.1)

The difference now is, that the agent not just blindly follows a predefined action sequence,
but also considers the probabilistic outcome of each action (the state transition), before
the next action is selected. This is called closed-loop planning in contrast to the case of
open-loop planning, where no state information is considered [Koc15, pp. 84-89].
As a policy π determines which action to choose, an agent must now decide which policy
to follow, starting in the current state s. To do this, different policies can be compared by
their value or expected utility V π(s). 1

The value V π(s) of executing a policy π starting in state s is the expectation of the infinite
sum over all discounted future rewards taking actions according to policy π:

V π(s) = E

[ ∞∑

t=0

γtR (st, at = π(st))

]
(2.2)

The discount factor γ is a number between 0 and 1 and describes the agent’s preference
for current rewards over future rewards. When γ is close to 0, it means that immediate
rewards are worth more than rewards in distant future. In case of infinite horizon problems
(as in equation (2.2)) a γ < 1 ensures a finite value, provided that all rewards are finite.
Now, having computed the value of some (or all) policies, there are always one or more

1The value and utility are measures which assign single numbers to a policy or state in order to express
the agents preferences for some policies and the desirability of a state. [RN10, Sec.16]



2.1. Markov Decision Processes 7

optimal policies, which have higher values than all the others. A rational agent, which
maximizes the value or expected utility, will always choose an optimal policy π∗

π∗ = arg max
π

V π(s). (2.3)

Hence, the optimal policy defines an action-selection strategy, which yields the highest
expected utility.

Value Iteration

There are different ways to compute the optimal policy, which differ in their computational
complexity and accuracy in value. One basic algorithm to iteratively compute the opti-
mal values of all states is value iteration. Since this involves solving nonlinear equations
iteratively, value iteration is rather computational complex.
The core of value iteration is the so-called Bellman equation, after Richard Bellman [Bel57]:

V ∗(st) = max
at∈A(st)

(
R(st, at) + γ

∑

s∈S
T (st+1 = s|st, at)V ∗(s)

)
, (2.4)

where V ∗(s) is the optimal value function.
Because of the max-operator the equation (2.4) is clearly nonlinear and states, that the
optimal value of a state st is the immediate reward for taking the optimal action at of all
possible actions in that state plus the discounted value of the next state.
The value iteration algorithm solves this equation iteratively. Hence, line 6 of Algorithm
2.1 is called a Bellman update.

Algorithm 2.1 Value iteration

1: function ValueIteration()
2: k ← 0
3: V0(s)← 0 for all states s . s := st
4: repeat
5: for each s ∈ S do
6: Vk+1(s)← max

a
[R(s, a) + γ

∑
s′ T (s′|s, a)Vk(s

′)] . s′ := st+1

7: k ← k + 1

8: until convergence
9: return Vk ≈ V ∗

A common termination condition, showing that the value function has converged, is
‖Vk − Vk−1‖ < δ. Here, ‖·‖ denotes the max norm, where ‖V ‖ = max

s
|V (s)|. In or-

der to speed up the convergence, instead of initializing the value function with zero, it
could also be initialized with a bounded function close to the optimal value function.
Now, after having computed V ∗, the optimal policy can be extracted by

π∗(st)← arg max
at


R(st, at) + γ

∑

st+1

T (st+1|st, at)V ∗(st+1)


 . (2.5)

Another way for computing the optimal policy is policy iteration, which directly improves
the policy in each step. In that way it can be avoided to compute the optimal value
function exactly and therefore it is not needed to solve the nonlinear Bellman equations.
But, as value iteration, neither is policy iteration applicable to larger problems with many
states. Thus, approximations for both algorithms, which reduce the computational cost
have been developed [Koc15].
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Q-Value

Another useful quantity when dealing with MDPs is the Q-value (function) Q(s, a), which
describes the value of taking action a in state s and following the optimal policy afterwards:

Q(st, at) = R(st, at) + γ
∑

st+1

T (st+1|st, at)V ∗(st+1) (2.6)

The relation to the value function is given by

V (st) = max
at

Q(st, at). (2.7)

Notice the difference to the value function V (s) introduced in (2.4) before, which describes
the value of a state, whereas the Q-value gives the value of taking an action in that specific
state. Hence, the Q-value is used to compare different actions, which will be especially
useful when dealing with solvers for POMDPs, covered in the next chapters.

2.2. Markov Decision Processes with State Uncertainty

As introduced in the beginning of this chapter, Partially Observable Markov Decision
Processes (POMDPs) can deal with partially observable environments, i.e. the agent is
uncertain about the state it is in.
Thus, it cannot execute the action π(s) based solely on the state, but also needs to consider
the certainty or probability of being in state s for selecting the next action. This enables the
agent not only to take actions, which maximize the value, but also to choose information
gathering actions in order to enhance its knowledge about the state. To simply consider
only the most likely state does not suffice.
Mathematically, POMDPs are a generalization of MDPs, because in addition to the state
space S / state set S, action space A / action set A, transition model T and reward model
R, a POMDP is extended by:

• O,O: An observation space O or set of observations O.

• Z(ot+1|st, at, st+1): An observation model that determines the probability or prob-
ability density of receiving observation ot+1 given that in state st the action at was
taken and the state transition to st+1 happened.
Note that Z is sometimes defined as Z(ot+1|st, at), Z(ot+1|at, st+1) or Z(ot|st)
[PGT06, RPPCd08, TBF06, Koc15].

The POMDP problem structure in Figure 2.2 is an extension to the MDP structure from
Figure 2.1. Because of this similarity the MDP (white symbols in Figure 2.2), which is
included in a POMDP is also referred to as underlying MDP [SPK13, p. 6]. Analog to
MDPs, a POMDP is defined as 7-tuple (S,A, T ,R,O,Z, γ).

Belief

Since the agent has no access to the true states, but only to the observations given by the
observation model, the action at depends on the complete action-observation history ht
the agent has encountered so far at time t.

h0:t = ht = {a0, o1, a1, o2, . . . , at−1, ot} (2.8)

As time goes on, this full history trace can get very long, so that it is not practicable to
plan in each time step with the complete action-observation sequence. Instead, the history
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Figure 2.2.: Probabilistic graphical model of a POMDP with observation model Z(ot|st)
(from [Koc15, p.135]).

at time t can be summarized by a posterior probability distribution over all states, called
belief state or belief distribution [PGT06, RPPCd08]:

bt(s) = Pr(st = s|ht, b0), (2.9)

where b0 is the initial belief state, i.e. distribution over all states.
If the state space is discrete and finite, bt(s) can also be written as belief vector bt =
(p0, p1, . . . , p|S|−1)> ∈ R|S| with pi describing the probability of being in state i. Due to
the constraint, that all state probabilites must sum to one, the space of possible belief
vectors, i.e. the belief space B is sometimes also called belief simplex, denoted ∆ [PGT03].
Smallwood and Sondik showed that the belief state bt(s) is a sufficient statistic for the
history [SS73]. As a result, the agent bases its next action only on the current belief state
(cf. the MDP policy in Eq. (2.1)):

at = π(bt) (2.10)

For sequential action selection, starting from the initial belief b0, the belief needs to be
updated recursively in every time step. This is done with the belief state update function
τ(b, a, o), where

bt = τ(bt−1, at−1, ot) (2.11)

This equation formulates the (recursive) Bayesian filter problem. Depending on the struc-
ture of the state space (continuous or discrete), the form of the belief distributions and the
restrictions on the transition and observation model regarding linearity, the belief update
function may have different implementations [TBF06, Koc15].
In case of discrete and finite state spaces the belief update function may look like [RPPCd08]:

bt+1(st+1) = τ(bt, at, ot+1)(st+1)

=
1

Pr(ot+1|bt, at)
Z(ot+1|at, st+1)

∑

s∈S
T (st+1|st = s, at)bt(s),

(2.12)

where Pr(ot+1|bt, at), the probability of observing o after taking action a in belief b, is used
as normalizer such that bt remains a probability distribution:

Pr(o|b, a) =
∑

s′∈S
Z(o|a, s′)

∑

s∈S
T (s′|s, a)b(s) (2.13)

Note that in these equations it is assumed that the states, actions and observations are
elements of the finite sets S, A, O. Other implementations of the Bayes filter and a short
introduction to the filtering problem are covered in Section 2.3.
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Belief-State MDP

With the definitions of τ(b, a, o), Pr(o|b, a) and by defining the reward function dependent
on the belief as

ρ(b, a) =
∑

s∈S
b(s)R(s, a), (2.14)

the POMDP can be viewed as observable MDP over belief states (called a belief MDP),
where Pr(o|b, a) specifies the probability of moving from b to τ(b, a, o) by taking action a
[Hau00].
It can be shown, that an optimal policy for this belief MDP is also optimal for the under-
lying POMDP, which means that one can solve a POMDP by solving its corresponding
belief MDP on the belief-state space. This reformulation does not necessarily simplify the
solution of the POMDP, since, if the physical state space of the POMDP is discrete with
|S| states, the belief-state space of the belief MDP is now continuous with |S| − 1 dimen-
sions. For continuous state spaces, this leads to infinite dimensional belief state spaces.
The value iteration algorithm as introduced in Section 2.1 is not capable of solving such
belief MDPs. Thus, this algorithm is adapted to POMDPs next.

Value iteration for POMDPs

The value function V ∗ of the optimal policy π∗ is still the solution to the Bellman equation
(cf. Eq. (2.4)), which is now formulated for belief MDPs:

V ∗(b) = max
a∈A

(
ρ(b, a) + γ

∑

o∈O
Pr(o|b, a)V ∗ (τ(b, a, o))

)
(2.15)

The Q-value (function) Q(b, a) is defined analog to MDPs (see Eq. (2.6)) as the value of
taking action a in belief state b:

Q(b, a) = ρ(b, a) + γ
∑

o∈O
Pr(o|b, a)V (τ(b, a, o)) (2.16)

With the value iteration algorithm for POMDPs introduced by Smallwood and Sondik
[SS73], it is possible to compute the solution to this equation optimally for specified finite
T horizon POMDP value functions VT (notice, with the value iteration algorithm defined
in Section 2.1 we were able to compute the value of infinite horizon MDPs).
The algorithm starts with the initial value function for horizon T = 1, by computing the
optimal one-step conditional plan, that determines which action is optimal for the first
time step.

V1(b) = max
a∈A

ρ(b, a) (2.17)

Then, the algorithm recursively computes the value function VT at horizon T , which max-
imizes the sum of all future rewards the agent receives in the next T time steps for any
belief state b, from the value function VT−1 at horizon T − 1. This value function update
is also called Bellman update or Bellman operator H (for POMDPs) (cf. Eqs. (2.4) and
(2.15)):

VT (b) = max
a∈A

(
ρ(b, a) + γ

∑

o∈O
Pr(o|b, a)VT−1 (τ(b, a, o))

)

= HVT−1(b)

(2.18)

Put differently, the algorithm extends the T − 1 step conditional plan by another step.
The conditional plan lists all possibilities of previous actions and observations and specifies
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in each case which action to take. That means, with each step the number of different
conditional plans grows exponentially with the possible number of observations |O|.
Similar to the MDPs (cf. Eq. (2.5)) the optimal policy for a finite horizon T is simply to
choose the action maximizing VT (b):

π∗T (b)← arg max
a∈A

(
ρ(b, a) + γ

∑

o∈O
Pr(o|b, a)VT−1 (τ(b, a, o))

)
(2.19)

Smallwood and Sondik showed that the optimal value function for finite-horizon POMDPs
can be represented by multiple hyperplanes and is therefore piecewise linear and convex.
Each hyperplane can be expressed by a |S|-dimensional vector, called α-vector. With the
set of α-vectors given by ΓT = {α0, α1, . . . , αm}, the value function for horizon T can be
written as the maximum over a set of hyperplanes:

VT (b) = max
α∈ΓT

∑

s∈S
α(s)b(s) = max

α∈ΓT

α>b, (2.20)

where α, b ∈ R|S|.
In this notation each α-vector corresponds to a different conditional plan, which differs
from other plans by any distinct action choice at some point in the future. Hence, as
already mentioned before, the exponential growth in the number of conditional plans is
equivalent to the increasing number of α-vectors, the longer the horizon gets. Fortunately,
many α-vectors are dominated by others (the corresponding hyperplane lies below others
for all belief points), such that the dominated vectors can be pruned away without affecting
the solution. To fully understand value iteration for POMDPs, the best way is to study
an illustrative example. For that, the reader is referred to [TBF06, RN10, Koc15].

Challenges of solving POMDPs

In the previous paragraphs, it was already observed, that with increasing generality of
the problem formulation as POMDP instead of MDP, the computational complexity of
POMDP solving algorithms increases. In the literature, there have been named especially
two distinct but interdependent reasons, why solving a POMDP is challenging: The curse
of dimensionality and the curse of history [PGT06]. Both curses have been encountered
in this thesis already.
The curse of dimensionality describes the problem, that in a POMDP with n physical
states, an optimal policy must be found over all belief states in a (n − 1)-dimensional
continuous space (since the probabilities a belief assigns to each state must sum to 1),
whereas the curse of history names the exponential growth in the number of distinct
possible action-observation histories the longer the planning horizon gets.
The exact value iteration algorithm for POMDPs explained above suffers from both curses,
which prevents the algorithm from being applicable to larger, practical POMDP problems
[PT87]. To overcome the curses, research has focused on approximate solution algorithms,
which try to reduce the computational cost by computing only an approximation of the
true optimal value function. The most popular ones will be presented in Chapter 3. It
will be clear that the real-time requirement is still hard to meet for those algorithms.

2.3. State Estimation for Belief Updating

In this section, the focus lies on filtering, since it is of great importance for belief updating
in POMDPs. Therefore, the general Bayes filter algorithm is discussed in Subsection 2.3.1.
An introduction to Gaussian filters and particle filters, which are two important instances
of the Bayes filter, follows in Subsection 2.3.2 and 2.3.3.
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The textbooks on state estimation, especially for robotic applications, which are used
throughout this section are [Sär13], [TBF06] and [Bar17]. They also provide detailed
proofs and derivations of the equations stated in this section.

In equation (2.9) the belief distribution was introduced as a surrogate for the full action-
observation history to describe the information an agent has about the state it might be in.
The function τ(bt−1, at−1, ot) was used to update the belief distribution, after new actions
and observations have been encountered.
In general, this problem of calculating the joint posterior distribution p(s0:t|h0:t) of all state
sequences given the full action-observation history is called state estimation problem. A
state sequence is denoted as s0:t, i.e. the set of states s0:t = {sk, k = 0, ..., t} encountered up
to time step t. Theoretically, this posterior can be computed by straightforward application
of Bayes’ rule

p(s0:t|h0:t) = p(s0:t|o1:t, a0:t−1) =
p(o1:t|s0:t, a0:t−1) p(s0:t)

p(o1:t)
, (2.21)

where p(s0:t) is the prior distribution defined by p(s0) and the (dynamic) transition model,
p(o1:t|s0:t, a0:t) is the observation model, i.e. the likelihood of the observations and p(o1:t)
is the normalization constant defined by

p(o1:t) =

∫
p(o1:t|s0:t, a0:t−1) p(s0:t) ds0:t (2.22)

and a0:t−1 is the action sequence up to time t− 1 [Sär13, p.9].
If, as in the POMDP case, the actions and observations arrive sequentially in time and the
posterior is recomputed in each time step, the term sequential state estimation is used.
Since it is computationally inefficient to recalculate the full posterior distribution over all
time steps every time a new action-observation pair arrives, only marginal distributions
over one time step k are used.
Depending on the time step k with respect to the range of available observations state
estimation problems can be divided into filtering, prediction and smoothing (see Figure
2.3) [Sär13, p.11]:

• Filtering: Computation of the marginal distribution of the current state sk given the
current action-observation history h0:k = {a0, o1, a1, o2, . . . , ak−1, ok}:

p(sk|h0:k) = p(sk|o1:k, a0:k−1), k = 1, ... , t (2.23)

• Prediction: Computation of the marginal distribution of the future state sk+n after
the current time step k:

p(sk+n|h0:k) = p(sk+n|o1:k, a0:k−1), k = 1, ... , t, n = 1, 2, ... (2.24)

• Smoothing: Computation of the marginal distribution of the state sk given a certain
history h0:t = {a0, o1, a1, o2, . . . , at−1, ot} with t > k:

p(sk|h0:t) = p(sk|o1:t, a0:t−1), k = 1, ... , t (2.25)

2.3.1. General Bayes Filter

The most general algorithm for the belief update function τ(bt−1, at−1, ot) is the Bayes
filter algorithm (Algorithm 2.2), which is in fact a reformulation of equation (2.21).

bt = τ(bt−1, at−1, ot) = BayesFilter(bt−1, at−1, ot) (2.26)
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Figure 2.3.: The different state estimation problems (from [Sär13, p.11]).

Algorithm 2.2 General Bayes filter algorithm (see [TBF06, p.27])

1: function BayesFilter(bt−1(st−1), at−1, ot)
2: for each state st do
3: bt(st) =

∫
T (st|st−1, at−1) bt−1(st−1) dst−1 . prediction step

4: bt(st) = 1
η Z(ot|at−1, st) bt(st) . measurement update step

5: return bt(st)

It recursively computes the marginal posterior belief distribution bt for the current time
step (now following the POMDP notation again) denoted as t from the belief bt−1, the
action at−1 and the latest observation ot.

The algorithm has two essential steps: the prediction step and the measurement update
step.
In the first step, the prediction step, the belief bt(st) after taking action at−1 in the prior
belief bt−1 is calculated by integrating (summing) over all possible previous states st−1.
This is equivalent to simulating the belief bt−1 one time step forward using the transition
model T . Due to the random noise in T the resulting translated belief bt is usually
deformed and broadened compared to bt−1.
Then, in the measurement update step, the intermediate belief bt is multiplied by the
probability of observing ot defined by the observation model Z. To ensure, that bt(st)
remains a probability, the result is normalized by the factor 1/η, where η is given by

η =

∫
Z(ot|at−1, st) bt(st) dst. (2.27)

This step results in the belief bt and usually narrows the density bt since by using the latest
observation more knowledge about the true state is incorporated.

For initialization of the filter algorithm one needs to specify an initial belief b0 describing
the knowledge about the state at time t = 0. If the value of s0 is known with certainty, b0
should be initialized with a point mass distribution, which is one for s0 and zero anywhere
else. In case of no prior knowledge about s0 at all, a uniform distribution about all possible
states might be used for b0.

If the algorithm could be executed, the result would be the optimal Bayesian solution
to the problem of recursively calculating the exact posterior density. Unfortunately, the
general Bayes filter (Algorithm 2.2) can only be implemented for very simple estimation
problems, because one needs to be able to carry out the integration in line 3 and the
multiplication in line 4. This is only the case if strong assumptions about the shape of
the belief distributions are made (see Sec. 2.3.2) or the state space is finite, such that the
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integral becomes a finite sum (see Eq. (2.12)) [TBF06, ch. 2.4.1].
Another approach is to avoid computing exact posterior belief distributions by using a
finite number of values as an approximation (see Sec. 2.3.3).

2.3.2. Gaussian Filters

Gaussian filters assume that the belief over the continuous state space is represented by
(multivariate) normal or Gaussian distributions

b(s) = N (s|µ,Σ) =
1√

(2π)N det Σ
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
, (2.28)

where s ∈ RN is the state vector, µ ∈ RN the mean vector and Σ ∈ RN×N is the symmetric,
positive-semidefinite covariance matrix. In this way, a full belief state can be described
only by a vector µ and a matrix Σ, which is very useful for efficient implementations of
such filters.

If the class of problems is further restricted to linear transition and observation models
with added Gaussian noise, i.e.

st+1 ∼ T (st+1|st, at) = Ast +Bat + qt,

ot+1 ∼ Z(ot+1|at, st+1) = Cst+1 + rt,
(2.29)

where qt ∈ RN ∼ N (0, Q) and rt ∈ RN ∼ N (0, R) with the covariance matrices Q and R,
the problem can be solved exactly by using the Kalman filter. The important property
of the normal distribution a Kalman filter makes use of is, that any normal distributed
random variable passed through a linear model remains normal distributed, such that the
parameters of the posterior distribution (lines 3 and 4 of Algorithm 2.2) can be computed
in closed form.

In practice the models are rarely linear, such that one often has to deal with nonlinear
models. Hence, the extended and unscented Kalman filters relax the linearity assumption.
They can be applied to problems with nonlinear transition and observation functions f
and g with additive noise:

st+1 ∼ T (st+1|st, at) = f(st, at) + qt,

ot+1 ∼ Z(ot+1|at, st+1) = g(st+1) + rt,
(2.30)

where qt and rt are defined as above. Due to the nonlinearities, the posterior belief can
no longer be calculated in closed form, since after a filter update the true belief can be
transformed to be non-Gaussian [Bar17, p. 101]. As a result, the goal of the extended and
unscented Kalman filter is to approximate the true posterior belief (which is no Gaussian
anymore) by a Gaussian distribution with parameters µ and Σ as good as possible.

The two filters differ in how they treat the nonlinearities during the filter update. The
extended Kalman filter uses the (first order) Taylor expansion to linearize the functions
f and g about the current state estimate mean µ and then use the Jacobian matrices in
the linear Kalman equations. With this method the mean is passed through the nonlinear
function f exactly, while the covariance is passed approximately through the linearized
version of the function. The problem is that the estimated mean µ often is not equivalent
to the true mean, which can produce large approximation errors [Bar17, p. 109].
The unscented Kalman filter avoids the linearization method used in the extended Kalman
filter by relying on a transformation of the input probability density function (pdf), called
sigmapoint or unscented transformation. With this transformation, the input Gaussian
pdf is represented by a fixed number of points (the sigmapoints), which are directly passed
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through the nonlinearity, such that the parameters of the input Gaussian can be re-
estimated from the sigmapoints afterwards. Doing so, the Jacobians of the nonlinear
functions are no longer needed.

However, even if there exist methods that can cope with nonlinearities (such as extended
and unscented Kalman filters) the assumption that the posterior belief distribution is
Gaussian is very limiting. For some tracking problems where the belief is focused around
the true state with a small uncertainty margin this assumption might hold, but for many
global estimation problems with very distinct hypotheses the posterior might have multiple
peaks at very different positions, such that an approximation with an unimodal Gaussian
is not sufficient.

As the problem of decision-making with POMDPs is similar to global estimation problems,
because the agent is expected to choose between actions that rely on just these different
hypotheses about the environment, Kalman filters can generally not be used in POMDPs.
Instead, the method of choice are particle filters which are well-suited to handle complex
multimodal beliefs and nonlinear observation and transition models.

2.3.3. Particle Filters

Particle filters are - just like the Gaussian filters from the previous section - a variant of
the general Bayes filter algorithm (Algorithm 2.2). In contrast to Gaussian filters they
do not make any assumption about the shape of the posterior probability density such
that the belief can be highly complex and multimodal. Additionally, particle filters can
handle any type of nonlinearity (no differentiability or continuity requirement) and do not
even need to know the mathematical form of the nonlinear function — in practice it can
be any software function [Bar17, p.108]. In these general problem formulations, particle
filters clearly outperform other filtering methods [AMGC02] such that they are applied in
numerous areas [DdFG01].

The particle filter achieves this flexibility by approximating the belief bt, i.e. the pos-
terior probability density function p(st|h0:t) with a set of Ns weighted state samples
b̂t = {sit, wit}Ns

i=1, where {sit, i = 1, ..., Ns} is a set of support points with associated weights
{wit, i = 1, ..., Ns}. The weights are normalized, such that

∑
iw

i
t = 1. This discrete

weighted approximation can be written as

bt = p(st|h0:t) = p(st|o1:t, a0:t−1) ≈ b̂t =

Ns∑

i=1

wit δ(st − sit). (2.31)

A sample (sit, w
i
t), which is also called particle (hence the name particle filter), can be

regarded as a hypothesis of being in that state with the weight indicating how likely the
hypothesis is. Figure 2.4 shows how a sample approximation of a probability density
function looks like. One can observe that the probability density value is proportional to
the sample density. Note that the weight of the particles is not depicted here, i.e. the
particles are considered to be unweighted (all particles have the same weight wit = 1

Ns
, i =

1, ..., Ns).

In fact, assuming that the posterior probability density function bt = p(st|h0:t) has the
shape as depicted in Figure 2.4(a), the goal of any particle filter is to find a set of particles
b̂t = {sit, i = 1, ..., Ns} as plotted in Figure 2.4(b) such that the likelihood of a particle sit
being in the set b̂t is proportional to that posterior pdf:

sit ∼ p(st|h0:t) (2.32)

Unfortunately, it is not possible to sample directly from p(st|h0:t), since the probability
density function might be highly complex and – more important – is unknown in advance
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(a) 2D pdf (b) samples from the 2D pdf

Figure 2.4.: Samples drawn from a 2D probability density function (from [CGM07])

(i.e. at time steps k < t). Instead, the particle filter recursively computes the current
particle set b̂t from the previous one b̂t−1, following the general Bayes filter. In particular,
every particle from b̂t−1 is simulated one step further in time using the random transition
model, the taken action at−1 and the obtained observation ot.

In general, methods that mainly use multiple random simulations are called Monte-Carlo
methods. Therefore, due to the sequential manner of the particle filter, the term sequential
Monte-Carlo is used frequently in the literature to describe this class of algorithms. The
field is reviewed by numerous surveys and textbooks and the ones used in this section are
[AMGC02, CGM07, DJ09, Gus10, TBF06, Sär13].

Importance Sampling

In order to create a particle set b̂t approximating a probability density function where it
is not possible to sample from at time t − 1, the particle filter makes use of a general
technique called importance sampling.

In general, importance sampling is used to approximate an arbitrary target density p(·),
where it is difficult to sample from, by a sample set {xi, wi}Ns

i=1. It is assumed, that p(x)
can be evaluated at any x and there exists a density q(·) with a support larger than p(·),
called importance or proposal density, which can also be evaluated at any x and from
which it is simple to generate or draw samples from.
Then, the xi are generated according to q(x) (xi ∼ q(x)) and the normalized weights wi

are used as correction factor making sure that the sample set really approximates p(x)
instead of q(x). The weighted approximation of p(·) is then given by

p(x) ≈
Ns∑

i=1

wi δ(x− xi), (2.33)

where the wi = w̃i∑Ns
j=1 w̃

i
are the normalized weights computed from the unnormalized

weights w̃i defined as

w̃i =
p(xi)

q(xi)
, i = 1, ..., Ns. (2.34)

Figure 2.5 shows the weighted samples as blue dashes on the x-axis, where the length
corresponds to the importance weights.
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(a) samples drawn from q(·) (b) weighted sample approximation of p(·)

Figure 2.5.: Using importance sampling to approximate the density p(·) (from [TBF06,
p.101])

Sequential Importance Sampling

Now, the importance sampling method will be applied to the general state estimation
problem posed at the beginning of Section 2.3 in equation (2.21). The goal here is to
approximate the posterior density p(s0:t|h0:t) by a set of weighted state sequence particles
{si0:t, w

i
t}Ns
i=1. This can be done by choosing the importance density in a way such that the

state sequences can be sampled sequentially, i.e. by starting from an initial state sample
set, the state sequences are extended by one time step t in each iteration. That means the
proposal density is chosen to factorize such that

q0:t(s0:t|h0:t) = q0:t−1(s0:t−1|h0:t−1) qt(st|st−1, ot, at−1). (2.35)

The samples si0:t ∼ q0:t(s0:t|h0:t) can then be obtained by adding to each existing sample
state trajectory si0:t−1 ∼ q0:t−1(s0:t−1|h0:t−1) the new state sample sit ∼ qt(st|sit−1, ot, at−1).

Moreover, the multiplicative decomposition of q0:t(s0:t|h0:t) also enables recursive compu-
tation of the unnormalized weights w̃it at time t from the normalized weights wit−1 by using
the following update rule:

w̃it =
p(si0:t|h0:t)

q0:t(si0:t|h0:t)
∝ wit−1 × η

T (sit|sit−1, at−1)Z(ot|at−1, s
i
t)

qt(sit|sit−1, ot, at−1)
, (2.36)

where the symbol ∝ denotes proportionality and η is a scaling factor, which takes into
account the likelihood of the observation ot given the previous action-observation history
h0:t−1 and the last action at−1. In practice, due to the subsequent renormalization of the
weights, this factor does not need to be computed.

An implementation of the algorithm starts with the indexed set (e.g. an array) of weighted
initial states {si0, wi0}Ns

i=1 and then samples in each time step t a new set of states and
computes the respective weights, resulting in a new set {sit, wit}Ns

i=1. If all sets are kept
in memory, the algorithm indeed generates a set of weighted state sequence particles
{si0:t, w

i
t}Ns
i=1, where all states with the same index i in the sets form a state sequence

and the weight of the sequence corresponds to the weights in the last time step. However,
in the case of filtering as explained earlier (see Eq. (2.23)), only the probability distribution
over the states at the current time step t matters. Hence, only the previously generated set
{sit−1, w

i
t−1}Ns

i=1 needs to be stored. Together with the taken action at−1 and the received
observation ot, the sequential importance sampling (SIS) particle filter summarized in
Algorithm 2.3 computes the current weighted particle set b̂t = {sit, wit}Ns

i=1 approximating
the current belief bt. Therefore, SIS is an instance of the general Bayes filter (Algorithm
2.2).
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Algorithm 2.3 Sequential Importance Sampling Particle Filter

1: function SequentialImportanceSampling(b̂t−1 = {sit−1, w
i
t−1}Ns

i=1, at−1, ot)
2: for i = 1, ..., Ns do
3: Propagate/draw particles . prediction

sit ∼ qt(st|sit−1, ot, at−1)
4: Compute weight . measurement update

w̃it = wit−1
T (sit|sit−1,at−1)Z(ot|at−1,sit)

qt(sit|sit−1,ot,at−1)

5: Normalize weights

wit =
w̃i

t∑Ns
j=1 w̃

i
t

, i = 1, ..., Ns

6: return {sit, wit}Ns
i=1

The SIS algorithm suffers from a major drawback: the particle degeneracy problem. This
problem describes the case that after a few iterations all the weight is concentrated on a
small portion of the particles. The other particles will have negligible weights. This leads
to the algorithm requiring high computational effort to update particles whose contribution
to the approximation to p(s0:t|h0:t) is almost zero. The reason for this is that the state
space is high dimensional since one sample si0:t represents an entire path history of state
variables up to time t. As the dimension even increases with each time step it is impossible
to approximate such a high dimensional probability density with particle set of fixed and
practically realizable size.

However, in the filtering case, where the focus is on approximating the low dimensional
marginal p(st|h0:t) resampling can be used to alleviate the particle degeneracy problem.

Resampling

The basic idea of resampling is to replace particles with small importance weights in the
set by particles with large importance weights, i.e. unlikely state hypotheses by more likely
ones. This is done by generating a new set of (more likely) particles b∗t = {si∗t , wi∗t }Ns

i=1

from the previous particle set with normalized weights {sit, wit}Ns
i=1, where the particles

si∗t are drawn from {sit, wit}Ns
i=1 with the weight wit as probability of selection. After this

resampling step, all weights are reset to wi∗t = 1
Ns

.

There exist different resampling schemes in the literature, that vary in the way how the
new particles are drawn from the previous set [DC05]. To explain two of the resampling
schemes, it is assumed that the normalized weights form Ns subintervals in the interval
[0, 1] as depicted in Figure 2.6, where each interval boundary (i.e. the vertical black bars)
is computed as sum of all particle weights up to the current weight. The simplest method
is then to draw Ns random numbers ri, i = 1, 2, ..., Ns from a uniform distribution over the
interval [0, 1] (since all weights are normalized and sum to 1) and add those particles to the
new set in whose intervals the random numbers ri fall. This scheme is called multinomial
resampling and is shown in Figure 2.6(a). Due to the multiple random draws, the variance
of multinomial resampling is usually quite large. Therefore, often other techniques such
as residual or stratified resampling are considered [AMGC02, DC05].

Due to its ease of implementation, the O(Ns) runtime and its low sampling variance,
the most widely used method is systematic resampling. Instead of making Ns random
draws from the interval [0, 1], only a single uniformly distributed random number r in
the interval [0, 1

Ns
] is generated. Based on this random number, the particles are selected

from the set as depicted in Figure 2.6(b) to form the resampled particle set b∗t . The
general concept of systematic resampling as depicted in Algorithm 2.4 is to compute the
cumulative distribution of the particle set by adding up all Ns particle weights. It is then
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(a) Multinomial resampling scheme

(b) Systematic resampling scheme

Figure 2.6.: Comparison of multinomial and systematic resampling

checked, whether the random number U = r + (m − 1) · N−1
s falls into the distribution

and if so, the particle is added to the set and the cumulative distribution is updated. The
result of the resampling step is an unweighted particle set, since all particles added to the
final set are assigned the weight 1

Ns
.

Algorithm 2.4 Systematic Resampling

1: function Resample(bt = {sit, wit}Ns
i=1)

2: b∗t ← ∅
3: r = rand(0;N−1

s ) . draw random number from uniform distribution

4: c = w
[1]
t

. construct the cumulative distribution function (CDF)
5: i = 1
6: for m = 1 to Ns do
7: U = r + (m− 1) ·N−1

s . move along the CDF
8: while U > c do
9: i = i+ 1

10: c = c+ w
[i]
t . update the CDF

11: add sit to b∗t
12: return b∗t = {si∗t , wi∗t }Ns

i=1

Sequential Importance Resampling

Sequential Importance Resampling (SIR), originally called Bootstrap filter [GSS93] com-
bines Sequential Importance Sampling (Algorithm 2.3) with the Resampling algorithm
introduced above with the goal to mitigate the particle degeneracy problem. To do this,
the resampling algorithm (Algorithm 2.4) is executed after the weight normalization step
in line 5 of the SIS algorithm (Algorithm 2.3) in each iteration of the particle filter. In the
short-term, this resampling or selection adds additional Monte Carlo variance, but in the
long-term it avoids accumulation of error. Thus, the filter algorithm becomes much more
stable [CGM07].
However, it is still possible, that due to an unlucky series of random numbers or a small
particle set size the particle set becomes degenerate, i.e. the weight is concentrated on
a few particles and only those are selected during resampling. This phenomenon is also
called particle deprivation, particle depletion or particle impoverishment. To avoid the case
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that after resampling all particles are equal, a small portion of noise could be added to the
particle set by replacing some particles by random particles. However, one should only
add random noise to the particle set, if other technique for fixing the deprivation problem
have failed [TBF06, p.113].

Standard Particle Filter

An important extension to this concept is to do resampling only in case of a degenerated
particle set, by using for example the effective sample size as a measure of degeneracy
[AMGC02]. This results in the standard particle filter algorithm with general proposal
function and optional resampling in every step, stated in Algorithm 2.5.

Algorithm 2.5 Standard Particle Filter

1: function ParticleFilter(b̂t−1 = {sit−1, w
i
t−1}Ns

i=1, at−1, ot)
2: for i = 1, ..., Ns do
3: Propagate/draw particles . prediction

sit ∼ qt(st|sit−1, ot, at−1)
4: Compute weight . measurement update

w̃it = wit−1
T (sit|sit−1,at−1)Z(ot|at−1,sit)

qt(sit|sit−1,ot,at−1)

5: Normalize weights

wit =
w̃i

t∑Ns
j=1 w̃

i
t

, i = 1, ..., Ns

6: if Resampling necessary then
7: b∗t = Resample({sit, wit}Ns

i=1)

8: if Additional noise necessary then
9: add noise to b∗t

10: return b∗t



3. Solving Decision Making Problems
with State Uncertainty

In section 2.2, a first algorithm which solves a POMDP exactly for its optimal policy over
a finite horizon was introduced. This algorithm suffered enormously from the two curses
of dimensionality and history and is therefore far from practical for larger problems.
Moreover, value iteration computes the value over the complete belief space, no matter
whether a belief state is reachable by the agent or not. Even for attainable beliefs, some
might only be attained with very small probability. This fact shows that for practical
decision-making algorithms it is desired to focus on computing values and policies only for
relevant belief states.
Various offline solvers try to realize this desire by using special heuristics in order to focus
on computing policies only for the reachable belief. They additionally break the curse of
history by approximating the value function with α-vectors only for a finite set of belief
points or samples. Some of them will be discussed further in Section 3.1.
For very large problems, however, the approximation of the value function by a set of
belief points might be too coarse, which would result in suboptimal policies. In order to
circumvent this problem, a potentially better approach could be to use online planning
algorithms. They avoid approximating the global value function over all beliefs, by com-
puting only local policies for the current belief of the agent. That means, after every
change or update of the agent’s belief, the policy needs to be replanned. This results in an
interleaved policy computation and execution phase for online planning agents (see Figure
3.1) with the advantage, that such an agent inherently plans only for the reachable belief.
The development of online POMDP algorithms has led to state-of-the-art solvers, which
are applicable to automated driving problems. Section 3.2 will examine some of the most
popular ones of those state-of-the-art online solvers.

3.1. Offline Solvers

Offline solvers compute an approximation of the optimal value function and store an ap-
propriate representation in memory. An agent then executes a policy based on this pre-
computed approximate value function and on the current belief the agents finds itself in.
As mentioned in section 2.2 the belief space is a high-dimensional continuous space, which
makes it impossible to store an exact representation. Therefore, early approaches focused
on representing the approximate optimal value function by a finite set of belief points
along with their values [Hau00]. In order to query the value at arbitrary belief points (not
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Figure 3.1.: Comparison between offline and online approaches (from [RPPCd08]).

necessarily in the set), an interpolation-extrapolation rule is used to specify the value as
a function of the belief points in the set.
The methods suggested differ by how the belief points are distributed over the belief space.
Most of them use a grid pattern over the belief space, which can have a fixed-resolution
[Lov91] or a non-regular pattern [Hau97].
However, those interpolation-extrapolation schemes are rather computational complex.
Thus, more recent approaches use α-vectors (see Eq. (2.20)) to represent the value func-
tion instead [SPK13]. For that reason the discussion of offline solvers will focus on the
latter type of algorithms.
This section proceeds by first introducing some upper bounds on the optimal value func-
tion, which have been proven useful, before then some well-known offline solvers are pre-
sented.

3.1.1. Upper Bounds for the Value Function

Knowing upper bounds of the value functions can often be beneficial. Those bounds can
be used as good initial guess for more accurate algorithms or help to eliminate suboptimal
actions early, e.g. in branch and bound techniques [Koc15]. Finally, they can even be used
as approximation of the optimal value function itself.
Two simple methods for computing upper bounds are QMDP [LCK95] and the Fast In-
formed Bound (FIB) [Hau00, Hau97].

QMDP

The QMDP method generalizes MDP value iteration to POMDPs by temporarily ignoring
the observation model. The result is a policy defined over the belief space instead of the
state space.
To compute the Q function for the POMDP, use of the underlying Q values of the MDP,
consisting of transitions and rewards only, is made. After running the value iteration
algorithm (Algorithm 2.1) the QMDP values can be obtained from equation (2.6). By
averaging over a belief state b one can get the respecting Q(b, a) value for the POMDP:

Q(b, a) =
∑

s∈S
b(s)QMDP (s, a) (3.1)

The agent then takes the action a, which has the highest Q for a specific belief state b.
QMDP is based on the assumption, that any uncertainty in the agent’s current belief state
will be gone after the next action. As a result, a QMDP policy generally overestimates the
true value of a belief state and will not take any information gathering actions [LCK95,
TBF06, p.565].
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Figure 3.2.: Value function representation of PBVI (left) and grid-based approaches (right)
(from [PGT03]).

Fast Informed Bound

In contrast to QMDP, the Fast Informed Bound method (FIB) tries to take the partial
observability into account (at least to some degree). Therefore, FIB provides a tighter
upper bound than QMDP (i.e. V FIB

T (b) ≤ V QMDP
T (b) for all b) [Hau00].

FIB makes use of the α-vector update, just as the exact value iteration for POMDPs, but
approximates it, such that the exponential growth in the number of α-vectors is avoided.
Instead, the set of α-vectors has always the size of |A| and can be computed in polynomial
time. The update of the α-vector αaT (s) at horizon T associated with action a is described
as follows:

αaT (s) = R(s, a) + γ
∑

o∈O
max
α∈ΓT

∑

s′∈S
Z(o|a, s′)T (s′|s, a)α(s′), (3.2)

where the observation model Z(ot+1|at, st) is used.
The α-vectors αa0 can be initialized to the α-vectors obtained by the value iteration algo-
rithm (Algorithm 2.1) at convergence and equation (2.6), i.e. αa0(s) = QMDP (s, a). The
value of a belief for the fast informed bound V FIB

T (b) can then be obtained by equation
(2.20) [RPPCd08].

3.1.2. Point-Based Value Iteration

The Point-Based Value Iteration algorithm (PBVI) solves POMDPs approximately by
estimating the optimal value function using strictly point-based updates [PGT06, PGT03].
The value function estimate is guaranteed to have bound on the error with respect to the
exact solution and will improve over the runtime of the algorithm (provided it is initialized
adequately), making the algorithm an anytime algorithm.
However, since PBVI is applicable only to problems with discrete action, observation
and state spaces of order 103 states, it is not suitable for complex autonomous driving
problems, but has been applied successfully to various robotic tasks [PGT06]. Moreover,
this algorithm provides useful insights in the theory of approximate POMDP solving and
introduced general concepts used also by other offline solvers, which makes it worth to
explain PBVI more in detail.

Point-Based Value Backup

As mentioned before, PBVI only computes the value function exactly at a fixed set of
belief points B = {b0, b1, ..., bq} and assumes that the value function at other belief points
close to them in the set have the same action choice and similar values. Hence, the value
function will contain at most one α-vector for each belief point and can be represented by
the set ΓT = {α0, α1, ..., αq}. This representation is shown in the left plot of Figure 3.2.
One can observe, that the approximation with α-vectors preserves the piecewise linearity
and convexity of the value function.

The operation all the point-based offline algorithms in this chapter have in common, is
the point-based value backup operation, which is the approximation of one step of exact
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value iteration for POMDPs (see Sec. 2.2).
While the Bellman update (2.18) and the α-vector backup in Algorithm 3.6 both compute
the value at a belief point b, the α-vector backup additionally computes the gradient of the
value function approximation making the α-vector a global approximation over the entire
belief space rather than only a local approximation at b.
During backup, the α-vectors corresponding to the belief point set B in ΓT−1 are updated,
such that the resulting set ΓT now approximates the value function to the solution of
the POMDP for horizon T . The process takes only polynomial time and is described in
Algorithm 3.6. The size of the solution set ΓT remains constant at every iteration. This
is a big advantage over exact value iteration, where the solution set grows exponentially.

Algorithm 3.6 Point-based value backup

1: function Backup(B, ΓT−1)
2: for each a ∈ A do . Create intermediate set of α-vectors Γa,oT
3: for each o ∈ O do
4: for each αi ∈ ΓT−1 do
5: αa,oi (s) = γ

∑
s′∈S Z(o|a, s′)T (s′|s, a)αi(s

′), ∀s ∈ S
6: Γa,oT = ∪i αa,oi
7: ΓT ← ∅ . Add only α-vectors maximizing the value to the solution set
8: for each b ∈ B do
9: αb = arg maxa∈A

[∑
s∈S R(s, a)b(s) +

∑
o∈Omaxα∈Γa,o

T
α>b

]

10: if αb /∈ ΓT then
11: ΓT ← ΓT ∪ αb
12: return ΓT

PBVI Algorithm

The PBVI algorithm uses a series of point-based value backups alternately with a belief
set selection or expansion step, where new belief points are added to the existing belief set
B in order to improve the global value function approximation.
The main PBVI function is presented in Algorithm 3.7. It accepts an initial belief point
set BInit, an initial value Γ0, the number of desired expansions N and the planning horizon
T as input. A typical choice for BInit is the initial belief b0. The initial value Γ0 is usually
set to a low value, such as α0(s) = Rmin

1−γ ,∀s ∈ S, where Rmin is the minimum possible

reward for any action a.1 By doing this, it can be shown that the point-based solution
always is a lower-bound on the exact value function [Lov91]. This is plausible since missing
computing an α-vector for any belief point can only lower the value function, i.e. in Figure
3.2 missing the vector α1 would lower the value function now consisting of α0 and α2 only.

Moreover, it is guaranteed that the error of the PBVI algorithm εT = ‖V B
T − V ∗T ‖∞ for

any belief set B and any horizon T is bounded by

εT ≤
(Rmax −Rmin)δB

(1− γ)2
, (3.3)

where δB is the density of a set of belief points B, which is defined to be the maximum
distance from any belief in the simplex ∆ to a belief point in set B, i.e. [PGT06]

δB = max
b′∈∆

min
b∈B
‖b− b′‖1. (3.4)

1When an agent always executes a specific action regardless of the current belief, this is referred to as blind
policy. Blind policies are usually used as lower bounds on the value function [Hau97, SS05, RPPCd08].
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Algorithm 3.7 Point-based value iteration

1: function PBVI(BInit, Γ0, N , T )
2: B ← BInit
3: Γ← Γ0

4: for N expansions do
5: for T iterations do
6: Γ← Backup(B, Γ) . approximate value function with belief set B

7: Bnew ← Expland(B, Γ) . select new belief points to be added to B
8: B ← B ∪Bnew
9: return Γ

Figure 3.3.: The reachable belief (from [PGT06]).

Belief Point Selection

The bound defined in Equation (3.3) indicates that the belief point set B is crucial for the
performance of PBVI. The goal is to keep B as small as possible, while at the same time
still having a good approximation of the value function. Therefore, new belief points to
be added to B must be selected carefully.
Pineau et al. examine different approaches for belief set expansion including uniform ran-
dom selection over the entire belief simplex. However, the best performing selection strat-
egy is Greedy Error Reduction (GER), which adds the candidate beliefs from the set of
reachable beliefs that reduce most effectively the theoretic error bound (cf. Eq. (3.3))
[PGT06].
The reachable belief can be determined by simulating beliefs already in B one step forward
in time using the belief update function τ(b, a, o). The result is a belief tree containing the
immediate descendants of the belief points in B, denoted as B and shown in blue in Figure
3.3. After the set B is determined, the GER chooses those beliefs with high reachability
probability and large error bound.

3.1.3. Heuristic Search Value Iteration

Another point-based POMDP algorithm, which can be applied to larger problems with ∼
105 states, is Heuristic Search Value Iteration (HSVI) [SS04, SS05]. Similar to PBVI, HSVI
also has theoretical convergence guarantees, anytime performance and takes reachability
in the belief space into account.

The differences between these two algorithms lie in both, how the new belief points are
selected, and how updates of the value function are ordered [PGT06]. Whereas PBVI
performs a batch of belief set expansions, followed by a batch of backup operations over
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Figure 3.4.: A local update at b (from [SS04]).

all points (see Algorithm 3.7), HSVI updates for each expanded belief only the value of the
direct ancestors (parents, grand-parents, etc., all the way back to the initial belief). This is
done in multiple exploration trials, where the algorithm repeatedly visits new belief points
by choosing actions and observations according to a novel forward search heuristic until
a specific termination criterion is met. When the trial has terminated, HSVI updates the
beliefs encountered during the trial in reverse order (i.e. the last visited belief is updated
first).

Value Function Representation and Local Updates

Unlike PBVI, HSVI stores an upper bound V (b) and a lower bound V (b) on the optimal
value function V ∗. The lower bound is represented by a set of α-vectors ΓV — similar to
PBVI. Therefore, the same backup operation is used for local updates (see Algorithm 3.6).
The only difference is, that the backup is only applied to a single belief point b instead of
a full set of belief points B.
For the upper bound, a vector set cannot be used, since updating the set (i.e. adding
another α-vector) would not improve (reduce) the upper bound in the neighborhood of
the local update due to the max-operator [SPK13, p. 8]. Therefore, the upper bound is
represented by the finite point set ΥV consisting of belief/value points (bi,vi).
To compute the value v at an arbitrary belief point b, the projection of b onto the convex
hull of ΥV must be calculated. This can be done exactly by solving a linear program (LP)
or approximately using the so-called saw-tooth (or jig-saw) approximation [Hau00, SS05].
Updates of ΥV are performed by adding a new point to the set using the Bellman operator
from equation (2.18).
In HSVI a local update of the value function at b means applying an update on both the
lower and upper bound. That means a new α-vector will be added to ΓV during backup
of the lower bound and a new belief/value point is inserted in ΥV (see Fig. 3.4).

Forward Search Heuristics

The gap between the bounds at a specific belief can be considered as the uncertainty at that
belief. The higher the difference, the more uncertain the algorithm is about the optimal
value at that belief point. The goal of the search heuristics is to reduce this uncertainty
and hence the regret at the initial belief b0, which is the difference in value between the
theoretical optimal policy π∗ and the policy π returned by the algorithm:

regret(π, b) = V π∗(b)− V π(b) (3.5)

More formally, the goal is to find a policy whose regret at the initial belief b0 is bounded
by a convergence parameter ε (i.e. regret(π, b0) ≤ ε).
To achieve this, HSVI greedily selects successors that maximize the so-called excess un-
certainty of a belief:

excess(b, t) =
(
V (b)− V (b)

)
− ε

γt
, (3.6)
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where γ is the discount factor and t is the depth of b (i.e. number of actions from b0 to b).
The excess is derived from the termination criterion of the function Explore, which is
true, if the discounted gap between the bounds at belief b is less than ε,
i.e. γt

(
V (b)− V (b)

)
≤ ε.

To reach the termination criterion, i.e. ensure convergence, the action with the greatest
upper bound is chosen:

a∗ = arg max
a

QV (b, a) (3.7)

This choice makes sure, that the eventual sub-optimality of the selected action may be
discovered when the a∗ upper bound drops below the upper bound of another action.
Then the other action is selected, since its optimal value might be higher. By selecting
actions according to the highest lower bound, sub-optimality might never be discovered,
since future updates can only increase the lower bound and no other actions will be taken.

After action selection, the heuristic chooses the observation that most contributes to the
excess uncertainty at the current belief b:

o∗ = arg max
o

[Pr(o|b, a∗) excess(τ(b, a∗, o), t+ 1)] (3.8)

If the excess uncertainty at the next belief node gets negative, the node satisfies the
termination condition and is called finished. Then, the exploration trial ends by updating
the lower and upper bounds of all visited nodes up to the root node in reverse order.

In this way, HSVI may visit the same belief point in many trials or even multiple times
during the same trial and adds a new α-vector for each visit. This is opposed to PBVI,
which stores one vector per belief point b ∈ B at most. However, the advantage of HSVI
is that there is no need to explicitly store a belief point set B as in PBVI, since the search
always starts at the initial belief b0 and discovers the beliefs to be updated during the
trial [SPK13, p.19]. Dominated elements that occur during the search in the lower bound
vector set and upper bound belief-value point set are pruned periodically [SS04].

HSVI Algorithm

The previously explained search heuristic is used in the Explore function of Algorithm
3.8. Starting from an initial belief b0 and the convergence parameter ε, the HSVI algorithm
first initializes the upper and lower bounds and then repeatedly executes exploration trials
until the convergence criterion at the initial belief b0 is met.

The lower bound is initialized using the blind policy method analog to PBVI (see Sec.
3.1.2) and for the upper bound the QMDP method or in the improved version of HSVI
the Fast Informed Bound can be used (see Sec. 3.1.1).

After termination of HSVI, the returned lower bound is used to determine the policy (cf.
Eq. (2.19)). So, the upper bound is only used for action selection during exploration trials.
Theoretically one can use the gap between the bounds to decide whether the algorithm
has converged, but experiments have shown that for large domains the gap closes very
slowly and remains large, even when the lower bound seems to converge [SPK13, p.47].

Therefore, usually HSVI is used in an anytime fashion, where the quality of the solution
improves over runtime. This can be done by making the loop in function HSVI an infinite
loop and simply setting ε at the top-level call to Explore to a slightly smaller value than
the current uncertainty at b0 in each iteration, i.e. ε = ζ(V (b0)− V (b0)), where ζ < 1 is a
scalar parameter [SS04].
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Algorithm 3.8 Heuristic search value iteration

1: function HSVI(b0, ε)
2: Initialize V and V
3: while V (b0)− V (b0) > ε do
4: Explore(b0, ε, 0)

5: return ΓV . lower bound as approximation of the value function

1: function Explore(b, ε, t) . follows a single path down the search
2: if V (b)− V (b) > εγ−t then

3: a∗ ← arg maxaQ
V (b, a) . select action according to V

4: o∗ ← arg maxo [Pr(o|b, a)excess(τ(b, a∗, o), t+ 1)]
. select observation that maximizes the gap between bounds

5: Explore(τ(b, a∗, o∗), ε, t+ 1)
. After the recursion, update both bounds on the way back up to the initial belief

6: ΓV ← Backup({b}, ΓV ) . see Algorithm 3.6
7: ΥV ← ΥV ∪ (b,HV (b))

3.1.4. Successive Approximations of the Reachable Space under Optimal
Policies

The point-based algorithm Successive Approximations of the Reachable Space under Op-
timal Policies (SARSOP) is related to HSVI, since SARSOP reuses many core components
of HSVI. The main contribution of SARSOP is the improved sampling strategy that tries
to sample new belief points from or close to R∗(b0), the subset of beliefs reachable only
by following an optimal action sequence. Since this optimal action sequence, which would
correspond to the optimal policy, is not known prior to solving the POMDP, SARSOP
tries to approximate R∗(b0) [HK08].

In the experiments conducted by Kurniawati et al. SARSOP has outperformed the im-
proved version of HSVI [SS05] in five out of six robotic tasks in terms of speed with similar
or even better reward levels making SARSOP one of the fastest offline POMDP solvers to
date. The reason for this performance is that SARSOP avoids unnecessary sampling in
R(b0)\R∗(b0), as R∗(b0) is usually much smaller than R(b0) [HK08].

SARSOP Algorithm

SARSOP retains the sampled belief points in a tree structure TR with the initial belief b0
as root, which is different from the point set representation used in HSVI. New points are
added to the tree in the Sample function by choosing actions and observations according
to HSVI’s search heuristics and using the belief update function τ(b, a, o). In this way, the
tree only consists of reachable beliefs.
Analog to HSVI, SARSOP also keeps the same upper and lower bound representations
(sawtooth approximation for upper and α-vector set approximation of the lower bound)
on the optimal value function. Thus, the bounds are initialized in the same way as in
HSVI.

The main loop of SARSOP iterates over three main functions Sample, Backup and
Prune until the termination condition is fulfilled, which can be a fixed gap size between
the upper and lower bound or a time limit similar to HSVI (see Algorithm 3.9).
The Backup operation is the standard α-vector backup as used in other point-based
algorithms (e.g. PBVI and HSVI).

Sampling

The Sample function in SARSOP corresponds to the Explore function from HSVI. In
fact the forward search heuristics implemented in Explore builds the core of the Sample
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Algorithm 3.9 SARSOP

1: function SARSOP(b0)
2: Initialize V and V
3: Insert belief b0 as root of tree TR
4: while termination condition not satisfied do
5: Sample(TR, ΓV )
6: Choose nodes from TR
7: for each chosen node b do
8: Backup({b}, ΓV ) . see Algorithm 3.6

9: Prune(TR, ΓV )

10: return ΓV . lower bound as approximation of the value function

function. Kurniawati et al. argue that the action and observation selection strategy
together with the termination condition of the trial controls the sampling distribution.
Hence, to focus more on sampling near R∗(b0) and minimize sampling from R(b0)\R∗(b0)
they extend HSVI’s termination condition by two new concepts: Selective deep sampling
and the gap termination criterion.

Selective deep sampling uses a learning-enhanced prediction V̂ of the possible optimal
value V ∗(b) at node b and ensures that a trial is continued even if the HSVI termination
criterion (V (b)−V (b) ≤ εγ−t) at b is met, if V̂ is likely to improve the lower bound at the
root b0.

In contrast to selective deep sampling, the gap termination criterion focuses on the early
termination of trials to avoid sampling in regions that are unlikely to be in R∗(b0) by
leveraging the tree data structure TR in SARSOP. While HSVI runs trials in Explore
recursively until its termination condition is met (this corresponds in SARSOP to following
a path in the tree from the root to a leaf), SARSOP can check other paths already in
the tree sharing the same action-observation-history wether the termination condition is
satisfied and terminate the trial early, even if the current node b does not have a target
gap size less than εγ−t.

For a detailed pseudocode of Sample the reader is referred to [HK08].

Pruning

SARSOP also introduces a more aggressive pruning strategy keeping the set ΓV of α-
vectors considerably smaller than that of other point-based solvers. Existing pruning
strategies usually remove an α-vector from ΓV , if it is dominated by others over the entire
belief space B, whereas SARSOP already tries to prune an α-vector if it is dominated over
R∗(b0) only.
As R∗(b0) is not known in advance, the set B of belief points contained in TR is used as
an approximation. To keep B as small as possible, any subtree of taking action a at node
b in TR can be pruned, if Q(b, a) < Q(b, a′), since an optimal policy never takes action a
in b.

Then with the pruned set B, an α-vector can be pruned if it is dominated by others in a
δ-neighbourhood of every point in B. This δ-dominance is defined by Kurniawati et al.:
α1 dominates α2 at a belief point b if α1 · b′ ≥ α2 · b′ at every point b′ whose distance to b
is less than δ, for some fixed constant δ [HK08].
δ-dominance can be evaluated quickly by computing the distance d from b to the intersec-
tion of the hyperplanes represented by α1 and α2 and making sure that d ≥ δ.
All in all, the improved sampling and pruning strategies increase the computational effi-
ciency of SARSOP and explain the performance improvement compared to HSVI.
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Figure 3.5.: Schematic of an online POMDP solving agent acting in a world.

3.2. State of the Art Online Solvers

In the previous section, some of the most important state of the art offline POMDP solvers
were presented. They all compute the optimal value function and hence the optimal policy
offline before policy execution. Because of this fact, they were all limited to discrete state,
action and observation spaces of reasonable size.
Online solvers on the contrary determine the optimal policy solely by planning from the
current belief state. That means the policy obtained by one planning step is only valid for
a single belief state. After execution of one action of the computed policy the world state
and hence also the belief state of the agent will change, such that the previous policy is
not valid anymore. Therefore, replanning based on the updated belief is necessary.
In general the belief update is performed using filtering methods from Section 2.3. As a
result of this planning and belief update cycle as depicted in Figure 3.5, the solver never
stores a representation of the full optimal policy or value function in memory and plans
only in the reachable belief space, which is often much smaller than the full belief space.
This fact makes online solvers even applicable to problems with continuous spaces like for
example automated driving problems.

The most successful online algorithms use tree search methods for calculating the current
optimal policy. For that reason in the following a short introduction to Monte Carlo tree
search methods is given, before it will be explained how these methods can be applied to
POMDP problems.

3.2.1. Monte-Carlo Tree Search Methods

Monte Carlo tree search (MCTS) received great attention due to its success in the chal-
lenging problem of computer Go and has been applied to sequential decision-making and
planning problems, which are modelled as MDPs or POMDPs, too [BPW+12].

MCTS incrementally constructs a search tree branching in different actions and states until
a given time limit or tree size is reached. This fact makes MCTS an anytime algorithm,
which means, that more computing resources increase the performance of the algorithm.
The basic steps of MCTS, which can be grouped in a tree and a default or rollout policy,
are depicted in Figure 3.6. During execution of the tree policy the existing search tree is
traversed from the root to its leafs by selecting existing nodes, while making a trade-off
between exploring new nodes, which have not been visited often and exploiting nodes,
which are already known to be promising. Upon arrival at a leaf node, a new node is
added and the default/rollout policy is executed to estimate its value. A simple rollout
policy could be based on random action selection for example. After that, the values of
all previously visited nodes are updated in the back propagation step.
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Figure 3.6.: One step of the general MCTS approach (from [BPW+12]).

Upper Confidence Bounds for Trees Algorithm

The most popular algorithm following the concept from Figure 3.6 is the Upper Confidence
Bound for Trees (UCT) algorithm [KS06]. It can be used to solve MDP problems with
large (discrete) state spaces, where there is one node for each state s ∈ S in the tree
and an action a ∈ A is assigned to each edge between the nodes. Every node contains
a value Q(s, a) and a visitation count N(s, a) for each action a and an overall count
N(s) =

∑
aN(s, a). The value Q(s, a) is estimated by the mean return of all simulations

in which action a was selected from s. At last, the transitions from one node to another
(as for e.g. in the Expansion step) are defined by the transition model T .
The special thing about UCT is, that during execution of the tree policy the nodes are
selected according to the UCB1 algorithm introduced by Auer et al. [ACBF02]. That
means the action selection is treated as multi-armed bandit problem, in which one needs
to choose from the available actions (corresponding to the arms) at the current node in
order to maximize the cumulative reward by taking the optimal action.

Auer et al. define a K-armed bandit problem as random variables Xi,n for 1 ≤ i ≤ K and
n ≥ 1, where each i is the index of a gambling machine (i.e., an “arm” of a bandit). Succes-
sive plays of a machine i yield rewards Xi,1, Xi,2, ... which are independent and identically
distributed according to an unknown law with unknown expectation µi. Independence also
holds for rewards across arms (actions); i.e., Xi,s and Xi,t are independent (and usually
not identically distributed) for each 1 ≤ i < j ≤ K and each s, t ≥ 1.

The UCB1 algorithm is a solution to this problem and can be seen as policy that determines
which action to choose at the current node. This policy dictates to choose the “arm” or
machine j that maximizes the upper confidence bound:

UCB1 = Xj + 2Cp

√
2 lnn

nj
, (3.9)

whereXj is the average reward obtained from machine j, nj is the number of times machine
j has been played so far, n is the overall number of plays done so far and Cp > 0 is an
exploration constant to prefer exploitative (Cp small) or explorative (Cp large) behavior.

Auer et al. showed that, if UCB1 is used to select the “arms”, the regret (i.e., the expected
loss due to not playing the best machine) grows only logarithmically2 with n for arbitrary
reward distributions with bounded support3.

2Logarithmic growth is very good, since it is a very slow growth!
3Rewards need to be finite.
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In the MDP setting of UCT the machines or “arms” correspond to the available actions at
the current node, the random variables Xi,n correspond to the estimated Q-value of action
i in the n-th visit of the current node, nj is the number of times action j has been selected
and hence Xj corresponds to the average (or estimated) Q-value of action j after n visits
of the current node.

Since nj = 0 leads to UCB1 =∞, it must be ensured that all machines are played once at
first. This implies that MCTS algorithms using UCB1 without any further adaptions such
as for example UCT are only applicable to problems with finite discrete action spaces.

3.2.2. Partially Observable Monte-Carlo Planning

The UCT algorithm explained above can solve problems with fully observable states, i.e.
MDPs. Silver and Veness extended this algorithm to partially observable domains by
using a tree search of histories (see Eq. (2.8)) instead of states [SV10]. The new algorithm
Partially Observable Monte Carlo Planning (POMCP) consists of a UCT tree search that
selects actions at each time-step and a particle filter with rejection that updates the agent’s
belief state similar to Figure 3.5. It hereby uses the same set of Monte-Carlo simulations
for both tree search and belief state updates.
Silver and Veness demonstrated that POMCP successfully solves POMDP problems with
approximately 1018 and 1056 states, which is by many orders of magnitude more than any
other online or offline solver (compare for e.g. HSVI2 ∼ 105) was capable of at that time.
POMCP achieved this massive improvement, because it successfully breaks the curse of
dimensionality and history by sampling (see Section 2.2). Specifically, it breaks the curse
of dimensionality, by sampling state transitions and focuses quickly on the promising ones
instead of considering all possible state transitions and the curse of history, by sampling
histories using a black box simulator.

Belief State Update

This simulator G is used as a generative model of the POMDP to sample successor states,
observations and rewards, given a state and action:

(st+1, ot+1, rt+1) ∼ G(st, at) (3.10)

G is called black box simulator, since it is used to update the value function without
looking explicitly at the internal models of the dynamics of the POMDP problem (i.e.
transition model T , observation model Z and reward model R). Therefore, the underlying
distributions of T and Z do not need to be known explicitly; it just must be possible to
generate samples from them and this is what the generative model G does.

As a result the standard particle filter from Algorithm 2.5 cannot be used, since it requires
evaluating transition and observation model at specific points for weight calculation. In-
stead, POMCP uses an unweighted particle filter with rejection (Algorithm 3.10) for belief
updating.

This particle filter makes use of the generative model and adds a sample state s′ to the new
belief bt, if the sample observation o′ matches the real observation ot. The problem with
this method is that it might be necessary to draw many samples until the observations
match. Moreover, due to the observation matching this particle filter cannot be applied to
problems with continuous observation spaces, since the probability of sampling the same
observation twice is zero.
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Algorithm 3.10 Particle filter with rejection

1: function UpdateBelief(bt−1, at−1, ot)
2: bt ← ∅
3: for i = 1, ..., |bt−1| do
4: s← random state in bt−1

5: repeat
6: (s′, o′, r) ∼ G(s, at−1)
7: until o′ = ot
8: add s′ to bt
9: return bt

a1

o1 o2
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o1 o2

a2

o1 o2
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o1 o2
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Figure 3.7.: A possible search tree of POMCP in an environment with 2 actions and 2
observations. Q-nodes are depicted as squares and V-nodes as circles.

POMCP Tree Search

During tree search, POMCP uses the same generative model G as for belief updates. Since
POMCP plans with histories instead of states, the tree branches not only in different
actions that can be taken from a node, but also in different observations that could possibly
be received after taking an action. This results in a tree with two different types of
nodes: Q-nodes T (ha) representing histories ending with an action ha and V-nodes T (hao)
representing histories ending with an observation hao (see Figure 3.7). Each node contains
its visitation count N(h) and value V (hao) or Q-value Q(ha) in case of Q-nodes. V-nodes
additionally store the belief B(h) as an unweighted particle set corresponding to their
history.

The partially observable tree search algorithm can then be divided into the functions
Search(), Simulate() and Rollout() as outlined in Algorithm 3.11. The Search-
function contains the main loop of the algorithm, which iteratively samples a state from
the belief B(ht) representing the current history ht and calls Simulate() until a time limit
is reached.
Simulate() basically combines the steps Selection, Expansion and Backpropagation of the
general MCTS approach. It recursively traverses the search tree from the root to a leaf
by selecting actions (i.e. Q-nodes) according to UCB1 analog to the UCT algorithm and
observations (i.e. V-nodes) according to the generated observation such that the generated
observation matches the observation edge leading to a V-node at the next deeper tree level.
The recursion stops as soon as a history hao is encountered for which no observation o
exists in the search tree, yet. Then, a new V-node is initialized with Ninit and Qinit (default
values are 0) and its value V is estimated by the Rollout-function, which uses a history
based rollout policy π(h, ·) to select actions. If the tree depth d reaches its maximum dmax,
no further node is added and the values of previously visited nodes are updated based on
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existing nodes.
As a last step, this value is back propagated through all visited nodes in reverse order
to compute the cumulative discounted rewards. Additionally, the visitation counts are
updated and at each V-node the generated successor state s′ is added to the belief B(h).

When the time limit is reached, the agent selects the action at with the greatest value,
receives an observation ot from the world and updates its belief B(ht+1 = htatot) ac-
cordingly. At this point, the node T (htatot) becomes the new root of the tree and the
remainder of the tree is pruned, as all other histories are now impossible.

Algorithm 3.11 Partially Observable Monte-Carlo Planning (from [SV10])

1: function Search(h)
2: repeat
3: s ∼ B(h)
4: Simulate(s, h, dmax)
5: until timeout
6: return arg max

a
Q(ha)

7: function Rollout(s, h, d)
8: if d = 0 then
9: return 0

10: a ∼ πrollout(h, ·)
11: (s′, o, r) ∼ G(s, a)
12: return r+γ Rollout(s′, hao, d−1)

13: function Simulate(s, h, d)
14: if d = 0 then
15: return 0
16: if h /∈ T then
17: for each a ∈ A do
18: N(ha)← Ninit

19: Q(ha)← Qinit

20: return Rollout(s, h, d)

21: a← arg max
a′

Q(ha′) + c
√

logN(h)
N(ha′)

22: (s′, o, r) ∼ G(s, a)
23: R← r + γ Simulate(s′, hao, d− 1)
24: B(h)← B(h) ∪ {s}
25: N(h)← N(h) + 1
26: N(ha)← N(ha) + 1

27: Q(ha)← Q(ha) + R−Q(ha)
N(ha)

28: return R

3.2.3. Partially Observable Monte-Carlo Planning in Continuous Spaces

The POMCP algorithm presented in the previous section builds a search tree from many
simulated state trajectories and estimates the Q-value of an action node by averaging over
the rewards from all state trajectories passing through that node. This procedure works
very well for large discrete state, action and observation spaces, where large means many
possible states, actions and observations.

Even though the restriction to discrete action spaces is often reasonable even in real world
problems, since the number of possible actions of an agent are often limited naturally
or can be easily discretized, discrete states or observations pose stronger restrictions to
formulating real world problems, because the real world is continuous by nature. Consider
for example the problem of automated driving. It is easy to discretize the acceleration
values or steering angles of the ego-vehicle, but it is difficult to discretize the observation
obtained from the environment, since other vehicles or pedestrians move continuously.
Hence, it is desired to solve POMDP problems with continuous spaces.

Unfortunately, applying the standard POMCP algorithm to continuous problems is not
possible. The reason for this is that the probability of sampling the same real number
twice from a continuous distribution is zero. In case of generating observation nodes in
the search tree, this results in a new observation being generated in every simulation.
The consequence is a shallow search tree that does not extend below the first layer of
observations (see Figure 3.8).
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Figure 3.8.: POMCP tree for discrete POMDPs (left), and for POMDPs with continuous
observation space (right). Due to continuous observation space, each simula-
tion creates a new observation and the tree cannot extend deeper [SK18].

To resolve this issue Sunberg and Kochenderfer propose to apply double progressive widen-
ing to POMDP search trees to accommodate for continuous action and observation spaces
and to use the observation model Z in combination with weighted particle filters (see sec-
tion 2.3.3) for continuous state spaces [SK18]. One of their new algorithms making these
adaptions to POMCP is called partially observable Monte Carlo planning with observa-
tion widening (POMCPOW). The requirement for the application of this algorithm is that
in addition to the generative model as in POMCP, one needs to be able to evaluate the
observation model Z pointwise. Hence, it must be known explicitly.

Double Progressive Widening in MCTS

Double progressive widening was first used to extend the UCT algorithm to continuous
action and state spaces [CHS+11]. For continuous problems — similar to POMCP —
UCT also produced only shallow search trees, since the probability of sampling the same
action or state twice in continuous spaces is zero. For action selection with UCB1 this
results in a selection strategy that will always explore newly generated actions, because
for UCB1 to work every possible action must be chosen once first. In continuous action
spaces there are infinitely many actions, and hence UCB1 will never stop exploring.

Progressive widening prevents the tree from becoming too wide and shallow, since it arti-
ficially limits the number of children of each node to kNα, where N is the number of times
a node has been visited and k > 0 and α ∈ (0, 1) are hyper-parameters controlling the tree
growth. If the number of children is greater than kNα, then, instead of adding a new node
to the tree, a previously generated child node is selected with probability proportional to
the number of times it has been previously visited, or if the child nodes are action nodes
according to UCB1.

The term double progressive widening was used to indicate, that progressive widening is
applied to both the state and action space, in case of UCT.

POMCPOW Algorithm

The newly proposed algorithm POMCPOW shares the same structure as POMCP and
uses the same Rollout function. The difference however lies in the Simulate function
outlined in Algorithm 3.12. The notation closely follows the paper from Sunberg and
Kochenderfer and is consistent with POMCP (Algorithm 3.11) to ease comparison [SK18].
To explain the extensions of POMCPOW, some extra notations are used: C(h) is a list of
children of a node in the tree indicated by its history h. The belief of a node is denoted as
list of states B(h) (in contrast to POMCP, where it was a set) with W (h) a list of weights
corresponding to those states. Finally, M(h) is a counter for how often a history has been
generated by the model.

To generate or select the next action in Simulate(), POMCPOW uses the function Ac-
tionProgWiden, which controls progressive widening of the action space and selects
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actions according to UCB1. Then, a successor state s′, an observation o and the corre-
sponding reward r is generated by the generative model G analog to POMCP. In the next
step, progressive widening of the observation space determines whether the new observa-
tion o can be added to the tree or an existing observation will be selected. POMCPOW
now appends the particle s′ weighted by the observation model Z to the lists B(hao) and
W (hao).
If progressive widening allowed a new observation node to be added as child to the tree,
the recursion stops and the value of this node is estimated with Rollout(), otherwise
the state s′ is replaced by a new one sampled from B(hao), the reward is adapted to the
new sampled state s′ and Simulate() continues one level deeper in the tree. At last, the
backpropagation step is analog to POMCP.

The result of this algorithm is a belief tree with weighted particles as belief representation
in the V-nodes. Over time, the number of particles in the V-nodes increases the more
simulations are added and beliefs which are more likely to be reached by the optimal
policy will have more particles in the end [SK18].

Algorithm 3.12 POMCPOW (from [SK18])

1: function Search(b)
2: repeat
3: s← sample from b
4: Simulate(s, b, dmax)
5: until timeout
6: return arg maxaQ(ba)

7: function ActionProgWiden(h)
8: if |C(h)| ≤ kaN(h)αa then
9: a← NextAction(h)

10: C(h)← C(h) ∪ {a}
11: return arg max

a∈C(h)
Q(ha) + c

√
logN(h)
N(ha)

12: function Simulate(s, h, d)
13: if d = 0 then
14: return 0
15: a← ActionProgWiden(h)
16: (s′, o, r) ∼ G(s, a)
17: if |C(ha)| ≤ koN(ha)αo then
18: M(hao)←M(hao) + 1
19: else
20: o← select o ∈ C(ha) w.p. M(hao)∑

oM(hao)

21: append s′ to B(hao)
22: append Z(o|s, a, s′) to W (hao)
23: if o /∈ C(ha) then . new node
24: C(ha)← C(ha) ∪ {o}
25: R← r+γ·Rollout(s′, hao, d− 1)
26: else
27: s′ ← selectB(hao)[i] w.p. W (hao)[i]∑m

j=1W (hao)[j]

28: r ← R(s, a, s′)
29: R← r+γ·Simulate(s′, hao, d− 1)

30: N(h)← N(h) + 1
31: N(ha)← N(ha) + 1

32: Q(ha)← Q(ha) + R−Q(ha)
N(ha)

33: return R



4. Information Particle Filter Tree
Algorithm

The Information Particle Filter Tree (IPFT) algorithm will be used in this thesis to solve
the driving scenario POMDP formulations in the next section. It is similar to POMCPOW
in the sense that it is an online, Monte-Carlo tree search based algorithm for solving
POMDPs with continuous state, action and observation spaces, but it differs in the way
of how the belief particles are propagated through the search tree [FT20, Fis19].
POMCPOW simulates single particles by using a generative model (s′, o, r) ∼ G(s, a),
which is based on state trajectories. Hence, it internally uses the transition model T ,
observation model Z and reward model R directly to generate the tuple (s′, o, r).
In contrast, IPFT uses a generative model b̂′m ∼ GPF(m)(b̂m, a, o

′) which is based on belief
trajectories. GPF(m) can be considered as approximation of the belief update function
τ(bt−1, at−1, ot) as introduced for finite discrete state spaces in Section 2.2 (cf. Eq. (2.12)).
For continuous spaces, however, the belief update τ is only tractable, if strong assumptions
about the belief distributions are made (Sec. 2.3.1). Therefore, GPF(m) uses a particle filter
(see Sec. 2.3.3) in combination with a sampled observation o′ to generate the posterior
belief b̂′m.

This method of solving the belief MDP by simulating approximate belief trajectories with
particle filters was introduced by Sunberg and Kochenderfer as particle filter trees with
double progressive widening (PFT-DPW) algorithm [SK18]. IPFT extends this algorithm
by integrating information measures in the reward computation in order to guide the search
in the direction of more informative beliefs.

How IPFT integrates information measures in PFT-DPW is discussed in the beginning of
this chapter. After that the algorithm will be explained and some implementation details
are given.

4.1. Belief Dependent Reward Calculation

As IPFT simulations are based on beliefs, rather than states, each observation node in
the tree contains a small particle set of fixed size m as approximation of the true belief:
b̂m ≈ b. Therefore, to solve the belief MDP, it is required to plan with belief-based rewards
ρ(b, a) instead of state-based rewards R(s, a).
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This reward function of the belief MDP is derived as expectation of R(s, a) under the
belief b(s) for a continuous state space S:

ρ(b, a) =

∫

S
R(s, a)b(s) ds (4.1)

The discrete version of this equation was stated in Equation (2.14), where the integral
becomes a sum.

The PFT-DPW algorithm, as well as all offline algorithms from Section 3.1 rely on this
specific definition of the rewards to compute the optimal value function V ∗(b) for the
belief MDP. Araya-López et al. propose ρPOMDPs as an extension to POMDPs, where
ρ(b, a) must not follow the definition in (4.1), but can be an arbitrary function over the
belief [ABTC10]. Their offline solver for ρPOMDPs requires discrete state, action and
observation spaces and a piecewise linear and convex reward function ρ.

Based on these ideas, IPFT augments the reward function by an additional term specifying
the information gain ∆Iγ(b, b′), such that the belief-dependent reward becomes a weighted
sum of the expected state-rewards and the information gain:

ρ(b, a, b′) =

∫

S
R(s, a)b(s) ds+ λ∆Iγ(b, b′), (4.2)

where the parameter λ serves as factor to trade-off reward maximization over information
gathering.

The form of the information gain ∆Iγ(b, b′) is chosen following the suggestion from Eck
et al. to use potential-based reward shaping (PBRS) to implicitly guide the agents search
[ESDK16]. It can be either discounted, where γ ∈ (0, 1) serves as discount factor, or
undiscounted, where γ is set to one:

∆Iγ(b, b′) = γI(b′)− I(b), (4.3)

with b′ being the belief state simulated one time step further than b and the function I(b)
being the potential function for a belief b.

Fischer and Tas make the distinction between those two cases, because in the discounted
case the optimal policy is guaranteed to be invariant under PBRS [ESDK16], whereas the
undiscounted case resembles more intuitively the idea of information gathering. However,
in their experiments the performance of both variants were almost equivalent [FT20].

Information Measures as Potential Function of the Belief State

In IPFT, the potential function I(b) is chosen based on information measures, where
Fischer and Tas define an information measure I in general as convex functions over the
belief space. Eck et al. suggest several other types of potential functions, but IPFT uses
information measures for multiple reasons:

• Information measures are domain independent, i.e. gathering information is re-
warded on any domain and no prior knowledge must be included.

• In case of uncertainty about the initial state of the agent, reducing this uncertainty
is often part of the optimal policy. Since at first the agent should determine its state
with reasonable certainty, before it maximizes the reward.

• The optimal value function V ∗ of a POMDP is also convex. Thus, potentials based
on the convex information measures serve as heuristic for V ∗.
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There exist various information measures, that meet the convexity requirement. In IPFT,
however, the negative entropy

−H(b) =
∑

s∈S
b(s) log b(s) (4.4)

is used as information measure for discrete states. In continuous state spaces, the negative
differential entropy

−H(b) =

∫

S
b(s) log b(s) ds (4.5)

serves as information measure for the belief distribution bel(s) over all states.

As IPFT approximates the belief b(s) as weighted particle set b̂m = {si, wi}mi=1 with
normalized weights, b(s) is only known at discrete points si. Hence, the integral is ap-
proximated by the weighted sum and the continuous belief distribution b(s) ≈ bKDE(s) is
estimated using Kernel Density Estimation. This results in the estimate of the negative
differential entropy:

−H(b) ≈ −Ĥ(b̂KDE) =
m∑

i=1

wi log b̂KDE(si) (4.6)

For estimation of bKDE(s) a Gaussian kernel is used [Gra18, p.29,35] and the bandwidth is
selected according to Silverman’s rule of thumb [Gra18, p.65,74]. The details of computing
b̂KDE(s) are given in the supplemental material of [FT20] and are therefore not restated
here.

However, using Silvermans rule of thumb for bandwidth selection can yield very inaccurate
estimates, if the true density is not close to being Gaussian. In the experiments, especially
in the Continuous Light Dark setting, where IPFT outperforms existing solvers, this is not
a problem, since all probability distributions are Gaussians and the transition and obser-
vation models are linear. Therefore, all distributions remain Gaussian and are sufficiently
well approximated by Gaussian kernels with a bandwidth computed by Silvermans rule of
thumb.

Another property of the Continuous Light Dark problem, that made KDE methods rea-
sonable, is the one dimensional state space, since the agent moves only on the real axis
back and forth. In such low dimensional problems the probability density function could
be approximated well enough by a small particle set used during tree search, such that the
entropy estimate Ĥ is still practicable to guide the agent in the direction of informative
belief states.

4.2. Belief Tree Search

IPFT belongs to the class of Monte-Carlo tree search algorithms and therefore also consists
of the four basic steps: node selection, node expansion, rollout and backpropagation (see
Sec. 3.2.1). It uses the UCB1 algorithm for action selection similar to POMCP and
applies progressive widening to both action and observation space analog to POMCPOW,
if necessary.

The overall structure resembles the one from POMCPOW and is given in Algorithm 4.13.
As IPFT simulates beliefs through the tree, each simulation starts by sampling a small
particle set b̂m with m particles from the initial belief b, which is represented by a bigger
particle set (N � m). Then, as in the other algorithms, Simulate() is called in order to
incrementally build the search tree (see Fig. 4.1).
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In Simulate, at first an action is selected according to the function ActionProgWiden
(line 15). Then, a new observation is generated (line 16) from the belief b̂m. This is done
by at first drawing a sample particle from the belief s ∼ b̂m with probability according to
its weight. With this state s and the selected action a successor state s′ is sampled from
the transition model s′ ∼ T (·|s, a) to generate the observation o′ ∼ Z(·|s′, a). In line 17
the posterior belief b̂′m is computed with a particle filter update GPF(m) (see Algorithm
2.5).

In the implementation of IPFT sequential importance resampling (Algorithm 2.4), where
resampling takes place in each step, is used for the particle filter update. This means
that all particle sets b̂m in the observation nodes are unweighted, as after resampling all
particle weights are equal (see Sec. 2.3.3). Note, that even though possible future beliefs
are simulated in this step, this is different from prediction in the context of state estimation
(see Sec. 2.3), since the belief updates are computed with simulated observations sampled
from the observation model. In prediction, no new observations and actions are available.

The algorithm proceeds in line 18 with the calculation of the shaped rewards ρ(b̂m, a, b̂
′
m)

with Equation (4.2). If the number of observation child nodes |C(ha)| does not exceed the
progressive widening limit, the tree is expanded by another observation node and the value
is estimated with Rollout. Otherwise an existing observation node is selected uniformly
from the set of child nodes C(ha), its observation o is replaced by the newly generated one
o′ and Simulate is called recursively from this node. Finally, the value and counts of the
nodes are updated during backpropagation.

Observation generation

The consequence of this observation replacement step is that an observation is never used
twice in the tree (see Figure 4.1, where observation edges are unlabeled). Hence, the parti-
cle filter update always relies on the currently generated observation, and always discards
previously sampled beliefs at a node upon new visits to those already existing nodes. Ex-
periments, in which observations where reused for belief updates during tree search did
not improve or speed up the convergence of the algorithm. In fact, reusing observations
has lead to edge cases, where the random generation of very unlikely observations result
in degenerated particle sets with all particles being equal. This in turn resulted in very
high kernel density estimates and hence high information rewards, as the variance of a
particle set with only equal particles is zero. The high information reward misguided the
tree search and the consequence was the selection of a suboptimal action.

From a theoretical perspective this means that during execution of Search multiple in-
dependent episodes (i.e. calls to Simulate) are sampled from the initial belief. Here
independent means that neither previously sampled observations, nor beliefs or particles
are reused in different episodes. The quantities which are stored in the tree and hence
reused over multiple different episodes are only the visitation counts and the (Q-)value
function estimates at each node for action selection.

PFT without Progressive Widening

The two main reasons to use progressive widening in MCTS is to apply the UCB action
selection algorithm in continuous action spaces and to ensure a deep tree in continuous
state and observation spaces (see 3.8) [CHS+11, SK18]. However, in case of action spaces,
it is a common practice in standard benchmark problems (as for e.g. Continuous Light
Dark or Laser Tag [SK18, SYHL13, SV10]) to adapt the POMDP model, such that the
actions remain discrete. Later, when the driving scenario will be formulated as POMDP
(see Chapter 5), the acceleration will be discretized analogously such that the algorithm
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Figure 4.1.: Two iterations of belief tree search of the IPFT algorithm.

only needs to choose between different discrete actions. Therefore, in this thesis progressive
widening will not be necessary for the action space.

In continuous observation spaces, progressive widening artificially limits the number of
observation nodes and hence forces the algorithm to reuse observations as for e.g. in
POMCPOW [SK18]. However, as explained in the previous paragraph, the experiments
conducted in this thesis suggest that reusing observations for particle filter updates dur-
ing tree search is not practicable. Hence, progressive widening might not be beneficial
in algorithms, where observations are not reused, as in IPFT. Therefore, the impact of
progressive widening on the observation space will be investigated further in Chapter 6.
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Algorithm 4.13 Information Particle Filter Tree Algorithm

1: function Search(b)
2: repeat
3: b̂m ← sample from b

. b̂m is a particle set with m particles
4: Simulate(b̂m, h, dmax)
5: until timeout
6: return arg maxaQ(ba)

7: function ActionProgWiden(h)
8: if |C(h)| ≤ kaN(h)αa then
9: a← NextAction(h)

10: C(h)← C(h) ∪ {a}
11: return arg max

a∈C(h)
Q(ha) + c

√
logN(h)
N(ha)

12: function Simulate(b̂m, h, d)
13: if d = 0 then
14: return 0
15: a← ActionProgWiden(h)
16: o′ ← sample s from b̂m,

generate o′ from (s, a)
17: b̂′m ← GPF(m)(b̂m, a, o

′)

18: r ← ρ(b̂m, a, b̂
′
m)

19: if |C(ha)| ≤ koN(ha)αo then
20: C(ha)← C(ha) ∪ {o′}
21: R← r+γ·Rollout(b̂′m, hao

′, d− 1)
22: else
23: o← select o ∈ C(ha) uniformly
24: o← o′

25: R← r+γ·Simulate(b̂′m, hao, d− 1)

26: N(h)← N(h) + 1
27: N(ha)← N(ha) + 1

28: Q(ha)← Q(ha) + R−Q(ha)
N(ha)

29: return R



5. Formulating the Motion Planning
Problem as POMDP

In the previous chapters, important fundamentals of decision-making and state estimation
have been presented. Moreover, state of the art offline and online solvers that are capable
of solving decision-making problems in continuous spaces were introduced. In this chapter,
this theory will be applied to the motion planning problem for automated driving at urban
intersection scenarios.

In general, motion planners for automated driving need to operate in highly uncertain
environments, such as intersections in urban areas. The uncertainties in those traffic sit-
uations arise from the vehicle’s imperfect perception of its own state (e.g. the position)
and other traffic participants and the imperfect prediction of their future behavior. How-
ever, having a good prediction of the future behavior of surrounding road users is crucial
for generating the future trajectory of the ego vehicle, as the behavior of the ego vehicle
strongly depends on the behavior of others. Since it is impossible to predict the future
with certainty, the automated vehicle needs to generate its trajectory based on uncertain
predictions. To consider these uncertainties in prediction and perception directly in the
planning process, the motion planning problem is formulated as POMDP (see Ch. 2).

The problem formulation used in this work is an extension to the one used in [HSB+18].
The new main contributions are

• the use of the interactive intelligent driver model to simulate other agents’ behavior
forward in time,

• the additional use of other vehicles pose (yaw-angle) as a feature to estimate the
drivers route intention,

• the extension of the planning algorithm to dynamic map updates in every time step,

• the adaption of the model to be used with weighted particle filters for belief state
updating,

• the application of a Particle Filter Tree online POMDP solver to the decision-making
problem.

5.1. Problem Statement

Similar to [HSB+18], the output of the motion planner presented in this work is a sequence
of desired acceleration values (at00 , a

t1
0 , a

t2
0 , . . . ) for driving in an urban scenario with an
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arbitrary road layout and variable number of other traffic participants with unknown

intentions. The path of the ego vehicle r0 and the path options r
(i)
k of all other vehicles

are extracted online from a given map and are assumed to be collision free with respect to
static obstacles. The sequence of acceleration values then defines the longitudinal velocity
along the path of the ego vehicle, which is referred to as path-velocity decomposition in
the literature and reduces the trajectory planning problem to a one dimensional problem
[KZ86].

In the problem setting, the environment consists of a set of agents (in this work only
vehicles are considered) V = {V0, V1, . . . , VNV} with variable size, with NV ∈ N0 and the
ego vehicle V0 and its given route r0. In every time step t ∈ N, every other vehicle Vk,

with k ∈ {1, 2, . . . , NV} has a set of route options Rk,t = {r(1)
k,t , r

(2)
k,t , . . . , r

(NRk,t
)

k,t }, with
NRk,t

∈ N. Upon change, the route options are updated online for every other agent based
on their current position in the map. A route option is given by its arc-centerline which

consists of a list of waypoints r
(i)
k,t = (q0, q1, . . . , qM ), with M ∈ N, and the vectors qj ∈ R2

defined in the global Cartesian coordinate system O, such that every route defines its own
Frenet coordinate system, denoted as Frk,t . Any other vehicle Vk may traverse from its
current route to another route with the unknown probability P (rk,t| rk,t−1). The route of
the ego vehicle does not change over time.

5.2. POMDP Formulation

To generate the velocity profile along the ego vehicle’s path as stated in the previous
section, the problem is now formulated as POMDP, which will then be solved by the
online Monte-Carlo tree search based solver introduced in Chapter 4.

In Section 2.2, the POMDP was defined as 7-tuple (S,A, T ,R,O,Z, γ). Therefore, all
elements of this tuple will be defined in this section.

5.2.1. Action-, State- and Observation Space

Motions and positions of vehicles in traffic are continuous and as the Particle Filter Tree
(PFT) algorithm (Ch. 4) can deal with continuous state spaces S and observation spaces
O they do not need to be discretized.

For action selection, PFT uses the UCB algorithm, which means that discrete actions are
required (see Sec. 3.2.1) since in this work no progressive widening is used for the action
space (see Sec. 4.2). Hence, the action space, which in reality is a continuous range of
accelerations, will be discretized to an equidistant spaced finite set of acceleration values,
even though the actuators of automated vehicles, which are in this case break and throttle,
can select continuous acceleration and deceleration values. This means that the behavior
generated by this POMDP planner can serve as reference input to lower planning or control
layers in the vehicle architecture, where the generated velocity profile is then smoothed
out, for example.

State space

Analog to [HSB+18], all vehicles in the scene are included in the state space, in order to
allow the modeling of interactive behavior between the ego vehicle and others. Hence, a
certain state st ∈ S at time t is defined as:

st = (sV0,t, sV1,t, sV2,t, . . . , sVNV ,t)
>, (5.1)

where sV0,t represents the state of the automated vehicle and sVk,t, k ∈ {1, 2, . . . , NV} the
states of the other vehicles in the scene. To ease notation, the subscript t will be dropped
in the following.
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Figure 5.1.: Visualization of the state space (adapted from [HSB+18]).

Since in this work, the planner should be able to deal with dynamic map updates as
defined in Section 5.1, it is not reasonable to store the longitudinal position of the vehicles
on their respective route, since the route may change from time step to time step. Such
map updates – in the following called environment updates – occur for example when the
car has traversed one intersection and arrives at the next one. In order to avoid repeated
reinitialization of the planner or planning with huge maps, the POMDP model is adapted
to support those environment updates.

Therefore, in this work instead of the longitudinal Frenet coordinate, the position of each
vehicle is included in global Cartesian coordinates in the state space. The ego vehicle state
is thus defined as

sV0 =

(
x0

v0

)
, (5.2)

where x0 = (x, y)> ∈ R2 is the position vector of the ego vehicle in the global Cartesian
coordinate system O and v0 ∈ R is its velocity. The state of the other vehicles is

sVk =




xk
vk
rk


 , (5.3)

with xk = (x, y)> ∈ R2 is the position vector of the other vehicle in the global Cartesian
coordinate system O and vk ∈ R is its velocity. The route rk ∈ Rk is the hidden variable
in the state space, which cannot be observed directly.

Observation space

Similar to the states, the observations ot ∈ O at time t are defined as

ot = (oV0,t,oV1,t,oV2,t, . . . ,oVNV ,t)
>, (5.4)

with oV0,t the observation of the ego vehicle and oVk,t, k ∈ {1, 2, . . . , NV} the observations
of the other vehicles. Again to simplify notation, the time t is left out in the following.
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As the route of the ego vehicle is known, its state is fully observable, such that the ego
observation resembles the ego state:

oV0 =

(
x0

v0

)
, (5.5)

where x0 = (x, y)> ∈ R2 is the observed position vector of the ego vehicle in the global
Cartesian coordinate system O and v0 ∈ R is its observed velocity. The route of the other
vehicles cannot be observed directly, as the route intention cannot be measured directly
by sensors. Hence, it is not part of the other vehicles’ observation. However, perception
systems of automated vehicles are capable of estimating other vehicles pose. Therefore,
the pose of the other vehicles is included in the observations, such that they are defined as

oVk =




xk
θk
vk


 , (5.6)

with xk = (x, y)> ∈ R2 is the position vector of the other vehicle in the global Cartesian
coordinate system O, θk ∈ R, the other vehicles’ pose, given by its yaw angle and vk ∈ R
is its velocity.

Action set

As explained in the beginning of this section, the actions for the ego vehicle need to
be discretized in the POMDP problem formulation. Therefore, to generate an optimal
sequence of desired acceleration values (see Sec. 5.1) the actions at ∈ A at time t are
taken from the equidistant spaced set

A = {−4.5,−3.0,−1.5, 0.0, 1.5} m
s2
. (5.7)

The asymmetry between maximum acceleration and deceleration values reflects the asym-
metric acceleration capabilities of vehicles. Moreover, the rather coarse discretization is
chosen to resemble the intuitive decisions human drivers need to make at intersection in
urban scenarios: “accelerate”, “keep driving at the current speed” or “brake in different
strengths depending on the situation”. Another reason not to use a finer discretization is
to reduce computational cost and to enable planning for longer horizons.

5.2.2. Transition Model

The transition model T (st+1| st, at) is used by the planner to predict multiple possible
future outcomes based on its current belief state, which is approximated by a particle set
consisting of many weighted state instances according to Section 5.2.1. As it is impossible
to predict the behavior of other road users with certainty, the model is chosen to be
probabilistic. Moreover, the model is also interactive since the interaction of other vehicles
with the ego vehicle is considered.

As the planner holds at least one route for each agent in the scene, and it is assumed that
every agent moves only along one of its routes (see Sec. 5.1), the motion of all agents can
be described by the one dimensional discrete motion model lt+1 =M(lt, at) with step size
∆t:

lt+1 =

(
lt+1

vt+1

)
=M(lt, at) =M(lt, vt, at) =

(
1 ∆t
0 1

)(
lt
vt

)
+

(
1
2(∆t)2

∆t

)
at, (5.8)

where lt = (l, l̇)
>

= (l, v)> ∈ R2 is a vector describing the position l and velocity v of a
vehicle along a route and at is the applied acceleration at time t.
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Each state st holds the position xk of each vehicle in the global Cartesian coordinate
system O. Thus, on each call to the transition model the Cartesian position xk = (x, y)>

must be matched to the respective Frenet coordinates fk = (l, d)> in the coordinate system
Frk of route rk and transformed back to Cartesian coordinates afterwards. Hence, with a
slight abuse of notation, the motion model Mrk of a vehicle along a route can be defined
as (

xt+1

vt+1

)
=Mrk(xt, vt, at) 7→ OTFrkM

(Frk TOxt, vt, at
)
, (5.9)

where the operator BTA represents a coordinate transform from coordinate system A to
B.

Transition Model of the Ego Vehicle

With the above definition, the transition model for the ego vehicle with added Gaussian
noise can be written as

sV0,t+1 = T (sV0,t+1| sV0,t, at) = OTFr0

(
M
(Fr0TOxt, vt, at

)
+

(
nx,V0
nv,V0

))
, (5.10)

where nv,V0 ∈ R ∼ N (0, σv,V0) and nx,V0 ∈ R ∼ N (0, σx,V0). nx,V0 is added to the
posterior longitudinal position lt+1 before back transformation to Cartesian coordinates.
The acceleration value at is the action selected by the planner for the ego vehicle, based
on the computed policy and the current belief state, s.t. at = π(bt).

Transition Model of the Other Vehicles

In order to predict the behavior of the surrounding vehicles in the scene with respect to
the ego vehicle, an appropriate model that describes human driver behavior is necessary.
Moreover, the model should be easy to evaluate in terms of computational cost, since it
will often be queried during tree search. Hence, finding a suitable model is not a trivial
task, since building those models is a field with a lot of ongoing research [BDCK20].

In this work, the Intelligent Driver Model (IDM) is chosen as model for the other vehicles
[THH00]. Originally, the IDM was designed as car-following model for one-lane situations
and is used for example in Adaptive Cruise Control (ACC) driver assistance systems for
highway driving [KTH10]. It is a parametric rule-based model, that balances the desire to
achieve free speed in case no vehicle is at front and the need to maintain a safe distance
to a leading vehicle if there is one.

Since the future trajectory of other vehicles is predicted along given route hypotheses,
which can be considered as different single lanes, it is considered as reasonable choice in
the transition model for the POMDP formulation in this work.

The IDM acceleration function is given by

aIDM(dbump, v,∆v) = amax

[
1−

(
v

vref,k

)δ
−
(
d∗(v,∆v)

dbump

)2
]
, (5.11)

where the desired (safe) distance is

d∗(v,∆v) = dmin + vT +
v∆v

2
√
amaxb

, (5.12)

and dbump is the (bumper-to-bumper) distance to the leading vehicle, vk the current ve-
locity of the vehicle and ∆v = vk − vlead the velocity difference or approaching rate to the
leading vehicle. The other parameters are given in Table 5.1.
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Parameter Description

vref,k desired/reference velocity of vehicle Vk
δ free acceleration exponent
T desired time gap
dmin minimum jam distance
amax maximum acceleration
b desired deceleration

Table 5.1.: Parameters of the Intelligent Driver Model.

This expression combines the free-road acceleration strategy

aref,k = amax

[
1−

(
v

vref,k

)δ]
, (5.13)

which accelerates the vehicle Vk to its reference velocity vref,k with an interactive deceler-
ation strategy

aint,k = −amax
(

d∗

dbump

)2

, (5.14)

that becomes relevant when the gap to the leading vehicle is not significantly larger than
the effective desired (safe) distance d∗.

In this work, only the interaction of other vehicles with the ego vehicle (and no interaction
among other vehicles) is considered. Therefore, in case the ego vehicle is not leading to
vehicle Vk, the acceleration aVk for vehicle Vk is given by

aVk = aref,k + nIDM, (5.15)

where nIDM ∈ R ∼ N (0, σIDM) is an additional Gaussian noise to accommodate for model
and parameter mismatch, as well as different driving styles of other drivers. If the ego
vehicle is on route rk of the other vehicle Vk, then the acceleration aVk for vehicle Vk is
calculated by

aVk = aref,k + aint,k + nIDM, (5.16)

with nIDM defined as above. Whether the ego vehicle is on vehicle Vk’s route, can be
determined by transforming the ego vehicles position in the routes coordinate system Frk
and checking if the lateral distance coordinate d is less than the lane width. The lane
width can either be passed to the planner for every route or — as done here — be set to
a constant lane width parameter wlane for all routes.

Having determined the behavior model of the other vehicles in the scene, the transition
model can then be formulated similar to the ego transition model as

sVk,t+1 =




xk,t+1

vk,t+1

rk,t+1


 = T (sVk,t+1| sVk,t, aVk,t) =

(
Mrk(xk,t, vk,t, aVk)

rk,t

)
, (5.17)

where the route rk of a vehicle Vk in each state does not change over time.

In real traffic, there are often many other surrounding vehicles, which need to be considered
for trajectory planning of the ego vehicle, even if they do not interact with the ego vehicle
at the moment, but may in the future. Hence, most of the time the behavior of the
other vehicles will be determined by the free-road driving strategy (see Eqs. (5.13) and
(5.15)) and the accelerations generated by this strategy in turn strongly depend on the
desired or reference velocity vref,k of vehicle Vk. Hence, including this parameter in the
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state space and thus in the planning process might be a promising extension to this work
to improve the prediction of other vehicles’ behavior during tree search. Similar to the
route intention, this desired goal velocity is another hidden internal state of other drivers,
which cannot be observed but would have to be inferred or estimated from observations
as well. Bhattacharyya et al. tackle exactly this problem in their work and estimate the
desired velocity of human drivers online using a particle filter in order to improve prediction
[BSBK20]. Another work using a particle filter for intention estimation is [SHLB18].

So far, the parameter is set manually to a reasonable constant value depending on the
scenario and the speed limit, and it is argued that the additional noise (in Eqs. (5.15) and
(5.16)) takes deviations from the true value into account. However, the variation of this
parameter still has an influence on the Q-function and hence the planned trajectory. This
relation will be evaluated later in Chapter 6.

5.2.3. Observation Model

The Particle Filter Tree algorithm uses particle filter updates with simulated observations
during tree search in order to simulate possible beliefs forward in time (see Sec. 4.2). In
this way, it solves the corresponding belief MDP of the POMDP (see Sec. 2.2). Therefore,
on one hand the observation model serves as generative model, such that observation
samples ot+1 ∼ Z(·| st+1) are generated from Z given a posterior state sample st+1, and
on the other hand Z(ot+1| st+1) must be evaluated point-wise, such that it can be used
during weighted particle filter updates in order to determine the weight of particles st+1

with either simulated or real observations ot+1 (see Sec. 3.2.3).

Generative Observation Model

The generative observation model, denoted as Z(·| st+1) generates observations oV0,t+1

for the ego vehicle and for all other vehicles oVk,t, k ∈ {1, 2, . . . , NV}. Since the action
at is already incorporated in the posterior state of the ego vehicle sV0,t+1, the generated
observation ot+1 does not depend on the previous action and is therefore no argument of
Z.

As the state of the ego vehicle is fully observable, oV0,t+1 can be simply generated from
sV0,t+1 by adding Gaussian noise (the subscript t+ 1 is dropped to simplify notation):

oV0 =

(
x0

v0

)
∼ Z(·| sV0) =

(
N (sV0,x,Σx,V0)
N (sV0,v, σv,V0)

)
, (5.18)

where the position vector x0 of the observation is sampled from a two-dimensional Normal

distribution with covariance matrix Σx,V0 =
(
σx,V0 0

0 σx,V0

)
∈ R2×2. The velocity v0 is

sampled from a normal distribution with standard deviation σv,V0 .

To generate observations for the other vehicles oVk,t+1 from their states sVk,t+1, k ∈
{1, 2, . . . , NV} their pose (yaw-angle) must be sampled. For this, it is assumed that a
vehicles pose is approximately aligned with the direction of route rk it is following. Hence,
the yaw angle in oVk,t+1 is sampled from a normal distribution with the mean being the
angle of the pseudo tangent vector θtan,rk(x) of route rk at point x ∈ R2 in the Cartesian
coordinate system O. The calculation of θtan,rk(x) is described in [ZBDS14].

Since position xk and velocity vk of the other vehicles are sampled analog to the ego vehicle
(5.18), the observations oVk,t+1 for every vehicle Vk, k ∈ {1, 2, . . . , NV} are generated
according to:

oVk =




xk
θk
vk


 ∼ Z(·| sVk) =




N (sVk,x,Σx,Vk)
N (θtan,rk(xk), σθ,Vk)
N (sVk,v, σv,Vk)


 , (5.19)
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where the sampled position xk is used to calculate θtan,rk and Σx,Vk ∈ R2×2 is defined
analog to (5.18).

Together, Equations (5.18) and (5.19) build the generative observation model of the
POMDP.

Observation Likelihood Model

In order to apply a (weighted) particle filter, the conditional probability density Z(ot+1| st+1)
is required, that defines the likelihood of a posterior state st+1, given an observation ot+1.
This density is also called measurement model (see Sec. 2.3).

The probability Z(ot+1| st+1) is obtained as the product of the observation likelihood of all
vehicles (including the ego vehicle) in the scene (the subscript t+ 1 is omitted to simplify
notation):

Z(ot+1| st+1) = p(oV0 | sV0)

NV∏

k=1

p(oVk | sVk). (5.20)

Technically, this amounts to an independence assumption between the noise in each obser-
vation of any other vehicle, which is only true in the ideal case and might not hold in cases
where two other vehicles are close to each other. However, this assumption is common
practice and therefore also used in this work [TBF06, p.152].

The likelihood p(oV0 | sV0) for the ego vehicle is defined as

p(oV0 | sV0) = p(ofl,V0 | sfl,V0) · p(ov,V0 | sv,V0)

= N (ofl,V0 | sfl,V0 , σfl,V0,PF) · N (ov,V0 | sv,V0 , σv,V0,PF),
(5.21)

where (·)fl denotes the l-coordinate of the position in Frenet coordinates of the respective
route: f = Frk TOx.

The likelihood p(oVk | sVk) for the other vehicles Vk is defined analog to (5.21), but with an
additional likelihood p(ork,Vk | srk,Vk) for the route rk:

p(oVk | sVk) = p(ofl,Vk | sfl,Vk) · p(ov,Vk | sv,Vk) · p(oVk | srk,Vk), (5.22)

where the first two terms are computed analog to (5.21) by Normal distributions
N (ofl,Vk | sfl,Vk , σfl,Vk,PF) and N (ov,Vk | sv,Vk , σv,Vk,PF), respectively.

The third term p(ork,Vk | srk,Vk) is the route likelihood function that determines the likeli-
hood of sVk being on route rk given the observation oVk . It is constructed of two features
that classify the route likelihood using the arc-centerline of the route. These features are

• the lateral distance do,x,Vk of the observed position ox,Vk to the centerline of route
rk, and

• the yaw angle deviation ∆θ = θtan,rk(xk)− θk between the observed yaw angle θk of
oVk and the tangent θtan,rk(xk) of the arc-centerline of route rk at position xk of sVk .

Hence, p(oVk | srk,Vk) is defined as

p(oVk | srk,Vk) = p(do,x,Vk | srk,Vk) · p(∆θ| srk,Vk)

= N (do,x,Vk | 0, σd,PF) · N (∆θ| 0, σ∆θ,PF),
(5.23)

where the standard deviations σd,PF and σ∆θ,PF have been guessed, based on simulation
results. The features are depicted in Fig. 5.2.

A common practice to mitigate the particle deprivation problem is to increase the mea-
surement model noise. Therefore, the standard deviations σfl,V0,PF, σv,V0,PF, σfl,Vk,PF and
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(a) lateral distance do,x,Vk (b) yaw angle deviation ∆θ

Figure 5.2.: Visualization of the two features for the route likelihood.

σv,Vk,PF are chosen to be larger than the standard deviations σx, σv, σθ used in the gen-
erative observation model.

Moreover, it should be noted that Z(ot+1| st+1) as defined above is not a true probability
density function. In the form of Equation (5.20), Z(ot+1| st+1) rather is a function pro-
portional to the true probability, which is sufficient to compute the particle weights, since
due to normalization of the particle weights, the particle set becomes an approximation of
the true density.

It would be interesting to investigate, whether including other features into p(oVk | srk,Vk)
(e.g. the velocity profile) would further improve the route intention estimation, which has
been done in [SHLB18].

5.2.4. Reward Model

The ego vehicle seeks to maximize its reward. Hence, the reward model is designed, such
that the vehicle drives with its reference velocity and avoids collisions and unnecessary
accelerations. A behavior deviating from this desired behavior is punished with high
negative rewards. Therefore, all terms of R(st, at, st+1) are modelled as negative rewards:

R(st, at, st+1) = Rvel(sV0,t) +Racc(at) +Rcoll(st, at, st+1). (5.24)

The velocity reward term Rvel(sV0,t) penalizes deviations from a given reference velocity
profile. Depending on the sign of the deviation, the reward is calculated by

Rvel(sV0,t) =

{
Cv+ (v0 − vref)

2, if v0 > vref

Cv− log
(
1 + (v0 − vref)

2
)

otherwise
, (5.25)

where a quadratic cost is applied if vref is exceeded and Cauchy loss otherwise [Bar19].
Cv+ and Cv− are reward scaling factors. An asymmetric cost function is used, since driving
slow or standing still might be an ordinary behavior in some cases (e.g. an occupied lane),
whereas driving with higher speed is rarely acceptable.

The reference velocity can be given as velocity profile along the route vref,rk(l) which
may depend on speed limit, road curvature and vehicle dynamics. For simplification, the
reference velocity is set to a constant value vref,V0 in this work.

The quadratic acceleration reward term

Racc(at) = Cacc a
2
t (5.26)
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is appended to obtain a smoother velocity profile as it encourages the ego vehicle to drive
with constant velocity.

In order to generate a collision free trajectory for the ego vehicle, the collision reward term
Rcoll(st, at, st+1) returns a high negative reward in case a collision with a surrounding
vehicle occurs. Thus, it is defined as

Rcoll(st, at, st+1) =

{
0 no collision

Ccoll ego vehicle collides || unsafe action
, (5.27)

where the negative collision cost Ccoll is chosen to be by magnitudes larger than the other
scaling factors, i.e. Ccoll � Cv+.

Collisions are detected, by modelling each vehicle as a single sphere and checking if the
moving spheres do intersect during a state transition [Eri05, p.223]. The radius of each
sphere is chosen to be half the width of the respective vehicle, with an additional safety
offset dsafe,offs. To further improve the quality of the collision checks, multiple spheres in
longitudinal direction could be used.

The IDM is reported to generate strong breaking maneuvers, if the input quantities such
as for e.g. the bumper-to-bumper distance dbump change in a non-continuous way, as it
is the case for “cut-in” maneuvers on highways [KTH10]. In urban scenarios considered
in this work, when the automated vehicle merges onto lane before another vehicle at a T-
intersection or when it enters a roundabout the bumper-to-bumper distance of the other
vehicle to the ego vehicle can change non-continuously as well. Therefore, in this case the
other vehicle is likely to perform strong or even emergency braking, which is not desired.
Hence, actions of the ego vehicle, where other vehicles must react to with strong braking
are marked as unsafe similar to [SK20] and treated analog to collisions in terms of returned
reward.

In particular, if the acceleration of the IDM aIDM = aref,k + aint,k for another vehicle Vk
is less than a given emergency braking threshold ath,emergency (aIDM < ath,emergency), the
action at is marked unsafe and the negative collision cost Ccoll is applied.

As soon as a collision has occurred or an unsafe action has been taken, the posterior state
st+1 is a terminal state, and will not be considered in future transitions or belief updates.
When all particles of a particle set are collision particles, the belief is terminal.

In this work the rewards are discounted, which means the discount factor γ is set to be less
than 1 in order for the rewards to remain finite even for infinite horizons [RN10, p.650].

So far, only rewards based on states and no information rewards are considered (see Ch.
4). Including belief dependent rewards based on information measures remains open for
future work.

5.3. Implementation Details

In the scope of this thesis, the Particle Filter Tree algorithm presented in Chapter 4 and
the POMDP model formulated in the previous section (Sec. 5.2) were implemented in
C++ from scratch and are evaluated in the simulation environment “P3IV: Probabilistic
Prediction and Planning Simulator for Intelligent Vehicles” [OcT20]. More details about
the source code and a link is provided in the Appendix A.2. As this simulator is written
in Python, the library pybind11 is used to create the necessary bindings for the C++
packages [JRM17]. Hence, the interface of the POMDP motion planner (which consists of
the solver and the POMDP model implementation) is exposed to the Python side.
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The planner takes as inputs all information necessary to feed the POMDP model as in-
troduced in Sections 5.1 and 5.2. This contains the position, velocity, pose and the size
of all relevant vehicles in the scene, as well as the routes attached with some regulatory
information, such as speed limits for example.

The output of the motion planner is a sequence of optimal acceleration values, which is
integrated to obtain a velocity profile over time. This velocity profile is then returned to
the simulation environment, where the planned actions are executed for the ego vehicle
and the other vehicles are steered by driver models or recorded real world data.

5.3.1. Map Data and Environment Update

In the simulation environment, the road map is internally represented by Lanelets [BZS14,
PPJ+18]. Since the route of the other vehicles is encoded in only one dimension in the
state space (see Eq. (5.3)), the map layout must be preprocessed, such that for every
vehicle based on their current position on the map and the maps routing graph, a list of
route options is returned. This is done in the simulators’ ’Understanding’ module, which
takes care of all the map processing and returns the route options as centerlines. In the
overall processing pipeline, the Understanding module is always executed before the belief
state update of the POMDP planner in every time step.

For the POMDP planner to be used in automated vehicles, it must be able to deal with
dynamic changes in the vehicles’ environment (see Sec. 5.1). The changes or environment
updates considered in this work are

• the detection of a new vehicle in the scene, that must be considered in planning,

• the exiting of a vehicle from the scene of the ego vehicle, and

• the change of the route options of a vehicle in the scene (for example if it has passed
an intersection).

If the POMDP planner receives information from the understanding module about a newly
detected vehicle, it initializes the belief about this vehicle and includes the sampled state
representation in the other states in the current belief state. Similarly, if the observation
for the belief update does not include a vehicle, which has been in the state representation
before, the vehicle is simply removed from the belief and not considered any further. In
case the possible route options of a vehicle in the scene have changed from time step to
time step, the POMDP planner resamples only the route option variable rk in the state
representation (see Eq. (5.3)) is resampled, based on the observation and the remaining
state information.

The initialization of a new vehicle and resampling of the route index rk will be explained
in more detail in the next section.

5.3.2. Belief Initialization

The generation of particles or state samples for the initial belief state is similar to obser-
vation generation described in Section 5.2.3. The difference is that instead of generating
observations given a posterior state, the initial states st=0 need to be sampled given an
initial observation ot=0 as defined in Section 5.2.1.

Hence, the ego vehicle states sV0 are sampled analog to Equation (5.18) from Normal
distributions with equivalent standard deviations, but the observation as mean:

sV0,t=0 =

(
x0

v0

)
∼
(
N (oV0,x,Σx,V0)
N (oV0,v, σv,V0)

)
. (5.28)
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As the position x0 sampled in this way is not on the route r0 of the ego agent, x0 is the
point on the route, which is closest to the sampled position.

Generating initial states for the other vehicles sVk is different from those for the ego vehicle,
since their state is not fully observable. Therefore, only the observable variables position
xk and velocity vk are sampled in the same way as for the ego vehicle:

sVk,t=0 =

(
xk
vk

)
∼
(
N (oVk,x,Σx,Vk)
N (oVk,v, σv,Vk)

)
. (5.29)

The hidden variable rk is sampled from a discrete probability distribution

p(rk = r
(i)
k | do,x, ∆θ), which depends on the lateral distance feature do,x and the angle

difference feature ∆θ as introduced in Section 5.2.3:

p(rk = r
(i)
k | do,x, ∆θ) =

p(do,x| sr(i)k

) · p(∆θ| s
r
(i)
k

)

∑NRk
l=1 p(do,x| sr(l)k

) · p(∆θ| s
r
(l)
k

)
, (5.30)

where p(do,x| sr(i)k

) and p(∆θ| s
r
(i)
k

) are assumed to be normal distributed analog to Equa-

tion (5.23).

5.3.3. Rollout Policy

During tree search, the MCTS based online POMDP solver (see Ch. 4) selects actions
according to UCB until a leaf node is reached, which has not been visited before. In order
to guess the value of this node a default or rollout policy πrollout is used for action selection
(see Sec. 3.2.1). In general, the closer this rollout policy is to optimal behavior, the faster
the algorithm will converge to the optimal solution. Moreover, as the rollout is performed
at the end of every episode it should also be quick and easy to execute, to obtain a deep
search tree. Hence, finding a good rollout policy is crucial for the performance of the
planning algorithm.

Even though it is possible to use rollouts based on other search algorithms, a constant-
velocity rollout for the ego vehicle is applied in this work [HSB+18, HSX+18].

The Particle Filter Tree algorithm simulates belief trajectories instead of state trajectories
in each episode by performing multiple Particle Filter updates with simulated observations
(see Ch. 4). This means that every rollout starts from the belief (which is approximated
by a particle set) at a leaf node. Therefore, rollouts also use particle filter updates in com-
bination with the constant-velocity action selection strategy and simulated observations.

Another option would be to find a single state that represents the belief at the leaf node
appropriately (either by sampling or averaging) and use this state to perform a state-based
rollout.

The rollouts are performed up to a maximum time horizon T or until a terminal belief
has been reached (see Sec. 5.2.4). In all experiments the maximum time horizon is set to
T = 5s.

5.3.4. Particle Filter

Particle Filters use resampling to avoid the particle degeneracy problem, where all the
weight is concentrated on a small portion of particles after a few iterations (see Sec.
2.3.3). In general, resampling can take place in every iteration or only if the particle set
is degenerated, as denoted in Algorithm 2.5.
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In this work, the particle filter is implemented, such that resampling is performed in every
iteration. This means that at every time step and in every V-node the respective particle
set consists of equally weighted particles.

In addition, in every time step, a small portion of particles is reinvigorated or replaced
by newly sampled particles, where the number of particles to be replaced depends on the
ratio between the maximum weight in the particle set and the maximum possible weight,
given an observation. The new particles are generated in the same way as during belief
initialization (see Sec. 5.3.2).





6. Evaluation

In this chapter, the particle filter and the POMDP planner developed within this work
will be evaluated. It will be demonstrated that the particle filter is able to track the
belief state and estimate the intention of other drivers successfully, and that the POMDP
planner generates collision free and interactive driving behavior for urban scenarios.

The feasibility of POMDP planners for behavior generation of automated vehicles has been
shown before, as for e.g. in the evaluation of the work used as main reference [HSB+18].
However, in their work Hubmann et al. did not analyze the sensitivity of the generated
trajectories on variations in parameters such as for e.g. the runtime or the exploration
constant of the planner.

Therefore, in this work the influence of parameter variations of the PFT POMDP solver
and the POMDP model on planned trajectories, the Q-function estimate and the conver-
gence will be investigated further.

The evaluation of the planning algorithm in this thesis is threefold: At first, the belief
state tracking and the driver intent estimation with the particle filter will be evaluated
in Section 6.2. Then, in Section 6.3 the PFT POMDP solver’s sensitivity to parameter
variations will be investigated and based on this analysis an optimal parameter selection
is made. Finally in Section 6.4, the impact of different IDM parameters in the POMDP
model on the generated trajectories are analyzed.

6.1. Driving Scenarios and Experimental Setting

For the evaluation of the POMDP planner the Probabilistic Prediction and Planning Sim-
ulator for Intelligent Vehicles P3IV is used [OcT20]. Since the simulator is still being
developed at FZI Research Center in Karlsruhe, the source code has not been published
yet.

The simulator uses scenarios and traffic data from the interaction dataset and therefore
provides a realistic environment to evaluate behavior and motion planners [ZSW+19]. The
interaction dataset is a record of real-world traffic and contains motions of various traffic
participants in multiple highly interactive driving scenarios from different countries. Thus,
it is used for behavior-related research in the domain of automated driving.

In this work only the roundabout scenario DR_DEU_Roundabout_OF is used for the evalua-
tion and demonstration of the POMDP planner. In the dataset every vehicle is assigned a
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unique ID, which will be used in this work to refer to the respective vehicles. The parame-
ters of the POMDP model and the solver are given in tables A.1 and A.2 in the Appendix
A, if not mentioned differently.

According to German traffic rules, vehicles in a roundabout have the right of way, which
means that other vehicles trying to enter the roundabout must yield to the vehicles already
in the roundabout. However, the POMDP planner is not given any prior knowledge about
traffic rules, which means they are not considered in the experiments.

The simulation environment is running on the same system as the planner. It reads all
the scene data provided in the data set and performs all the necessary preprocessing (as
explained in Sections 5.1 and 5.3). All experiments were performed on an Intel Core
i7-8850H CPU with a base frequency of 2.60GHz.

6.2. Driver Intent Estimation

In this section, the driver intent estimation of the particle filter is evaluated. The particle
filter uses the definition of the state and observation space from Section 5.2.1 and the
transition and observation model from Sections 5.2.2 and 5.2.3. All evaluations in this
section were performed with a particle set size of 10000 particles.

The performance will be assessed in two different scenarios from DR_DEU_Roundabout_OF

(see Fig. 6.1). In the first scenario (Fig. 6.1(a)) from timestamp 1430001 vehicle ID60
is on Route 0 and stays in the roundabout at the first exit. The second scenario (Fig.
6.1(b)) is taken from timestamp 189000, where vehicle ID85 follows Route 1 and leaves
the roundabout at the first exit.

980 990 1000 1010 1020 1030 1040 1050 1060 1070
Easting (m)

960

970

980

990

1000

1010

1020

N
or

th
in

g
(m

)

t=143.0s

Route 0 (stay)

Route 1 (leave)

v=7.50ID60

(a) Vehicle ID60 follows Route 0

980 990 1000 1010 1020 1030 1040 1050 1060 1070
Easting (m)

960

970

980

990

1000

1010

1020

N
or

th
in

g
(m

)

t=189.0s

Route 0 (stay)

Route 1 (leave)

v=4.31ID85

(b) Vehicle ID85 follows Route 1

Figure 6.1.: The two evaluation scenarios for driver intent estimation from scenario
DR_DEU_Roundabout_OF at timestamp 143000 and 189000.

Results

Figures 6.2 and 6.3 show the estimated route probability over time, as well as representative
particle set approximations at times, where the route intention becomes obvious. For both
scenarios the intention estimation is performed once with the yaw angle feature and once
without it (see Sec. 5.2.3).

In the first scenario where vehicle ID60 stays in the roundabout including the yaw angle
feature greatly improves the route intention estimation, as the particle filter is able to

1Timestamps are given in milliseconds.
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(a) The estimated route probability for Vehicle ID60.
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Figure 6.2.: The route intention estimation for a vehicle staying in the roundabout (making
a left-turn).
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(b) Particle set with yaw angle feature.
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Figure 6.3.: The route intention estimation for a vehicle leaving the roundabout (making
a right-turn).
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estimate the right route intention approx. 0.8s earlier than without the yaw angle feature
(see Fig. 6.2(a)). Moreover, without it, the estimation is not able to estimate the true
intention, as it assigns a high probability to the wrong intention for a long time (see peak
at 147.2s in Fig. 6.2(a)). The reason for the wrong estimation is that at 147.2s, the lateral
distance to the wrong Route 1 is close to zero (see origin of ID60 in Fig. 6.2(c)) and hence
the lateral distance classifier assigns high probability to particles with the wrong route
variable.

For the second scenario where vehicle ID85 leaves the roundabout at the first exit, the
performance improvement is not as large as before, as vehicle ID85 drives far from the
route centerline and the orientation of the route centerlines up to 192.4s does not differ
very much (see Fig. 6.3(a)). The reason for peak at 192.0s for the estimation with the
yaw angle are unsmooth route centerlines returned by the Lanelet2 library [PPJ+18]. The
peak is also visible but less noticeable in Fig. 6.2(a) between time 146.0s and 146.7s.

6.3. Solver Parameter Analysis

The POMDP motion planner uses the Particle Filter Tree algorithm introduced in Chapter
4 to solve the POMDP, which has been formulated in Section 5.2. In order to apply this
online POMDP solver, various parameters need to be selected such that the solver finds a
good approximation to the optimal policy for the POMDP in limited runtime.

Therefore, in this section, the sensitivity of the algorithm to changes in the parameters
search time (runtime) Trun, exploration constant c, and the number of particles used for
tree search m is analyzed. Moreover, at the end of this section by varying the parameter
kobs it will be examined whether Progressive Widening on the observation space is useful
for the PFT algorithm (see Section 4.2).

Objective

Typically, planning algorithms must meet hard real-time constraints for the application
in automated vehicles. This means, that runtime available for trajectory planning is very
limited in a cars control loop. The presented algorithm is very computationally complex as
it finds a policy for the automated vehicle by multiple random simulations and improves its
solution with additional runtime. Therefore, one must trade-off between solution quality
(e.g. long planning horizons) and replanning frequency.

In their work, Hubmann et. al limit the runtime available for planning to 1s and use
a step size of ∆t = 1s in the transition model in order to obtain trajectories for long
planning horizons of 6s to 8s [HSB+18]. However, urban scenarios are highly uncertain
and predictions become very unreliable for long planning horizons. Thus, in this work
the planning horizon is limited to 5s and a smaller step size of ∆t = 0.5s is used in the
transition model, while keeping the runtime limit equal to Trun = 1s.

Within these constraints, the influence of the solver parameters on the planned trajectory
will be investigated. The objective is to find a suitable parameter set, such that the algo-
rithm finds a good approximation to the optimal policy within one second (1Hz replanning
frequency).

Evaluation Scenario

The scenario used for the solver parameter analysis is shown in Fig. 6.4. It is taken from
the roundabout setting DR_DEU_Roundabout_OF at timestamp 146000 in the interaction
dataset. Initially, the ego vehicle (ID61) is driving at speed v = 6ms and the other vehicle
(ID60) at approximately v = 5ms . The approximate time-to-collision of the ego vehicle
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is 3s if the other vehicle follows Route 0 (blue route). This can be seen in Fig. 6.4(a),
where the position of the cars at t = 149.0s is drawn for the ego vehicle moving with
constant speed and the other vehicle according to the recorded data. The initial belief of
the planner about the route intention of vehicle ID60 is depicted in Fig. 6.4(b).

For the solver, this scenario is challenging as the collision is relatively far in the future and
not certain, such that a deep search tree of at least 6 levels is necessary to find a good
policy, that contains knowledge about the potential collision.
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Figure 6.4.: The evaluation scenario DR_DEU_Roundabout_OF at timestamp 146000 and
at t = 149.0s three seconds later, if the ego vehicle EID61 keeps driving
at constant speed with v = 6ms and vehicle ID60 behaves according to the
recorded data.

Approach

In contrast to standard POMDP benchmark problems such as Light Dark or Laser Tag,
there is no benchmark available for the self-defined automated driving POMDP, to select
the parameters according to. Hence, in this work the parameters are selected based on the
shape of the search tree, the Q-function estimate and the convergence of the Q-value for
each action on the first tree level.

Therefore, in the following subsections (Figs. 6.5, 6.6, 6.7, 6.8), three plots are evaluated
for every selected parameter combination:

The left plot shows the convergence of the Q-function estimate Q̂(b, a) for all actions on
the first tree level. Thus, Q-values are plotted over runtime.

The center plot shows all sampled trajectories contained in the search tree. Each accel-
eration sequence is integrated in order to obtain a velocity profile, which is then plotted
over time with high transparency. During tree search many action sequences are visited
several times. Thus, the darker the line in the plot, the more often the corresponding
action sequence has been visited. Trajectories which have led to collisions are plotted less
transparent in red and collision-free trajectories are plotted in green. Additionally, the
thick red dashed line is the reference velocity of the ego-vehicle and the thick blue line the
optimal trajectory returned by the planner.
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The right plot shows the Q-function estimate Q̂ as a contour plot in a time-velocity dia-
gram. This plot is obtained by extracting the Q-value of every Q-node in the search tree.
The x and y coordinate (which correspond to time and velocity values in this case) of
every value is the end point of the integrated action sequence leading to the corresponding
Q-node. Put differently, the Q̂ plot emerges from the sampled trajectories plot, by plot-
ting the Q-value at the end of each action sequence. Due to the equidistant acceleration
spacing, different action sequences have equal endpoints in time-velocity space. Therefore,
at those points the mean of all Q-values is depicted in the plot. The color scale ranges
from red for low or high negative Q-values (potentially arising from collisions) to green
for high or low negative rewards. Regions in the time-velocity space, which could not be
explored to limited action space or runtime limits are blanked out. Finally, the thick red
dashed line and the thick blue line are added analog to the sampled trajectory plot in the
middle.

Runtime Trun

At first, the influence of the runtime is examined in general. For that, with an initial
guess for the parameters number of search particles m, exploration constant c and the
observation widening factor kobs the runtime Trun is varied. The values are given in Tab.
6.1.

Parameter Value

m 5
c 5000
kobs 0.5
Trun {0.5, 1, 5, 10}s

Table 6.1.: Parameters for runtime evaluation.

Results

The results for the different runtimes are depicted in Fig. 6.5. In general, it can be seen,
that with longer runtime the search tree gets deeper and the Q-function estimate becomes
smoother with fewer peaks. This manifests, that indeed with more runtime the algorithm
improves its solution. The reason for this is, that over time more episodes, i.e. trajectories
are sampled, which can be seen in the middle plots.

In this scenario, the algorithm already detects the potential collision with only 500ms
runtime, even though the solution has a high variance and planning horizon is very limited.
For long runtimes (5 and 10s), the algorithm is able to plan for the full 5s time horizon
and finds the critical time interval where the collision is likely. However, as can be seen
in the left plots, the Q-value of the actions on the first level do not vary strongly after a
runtime of 1s. Hence, it can be concluded that even though the algorithm is not able to
plan for the full 5s time-horizon, it has most likely converged to a feasible solution and that
a runtime of 1s is a good trade-off between solution quality and computational resources.

Exploration Constant c

Next, the impact of the important parameter c, which is the exploration constant that
serves as a method to trade-off exploration and exploitation is investigated further. In
general, low values for c make the algorithm favor exploitation over exploration. This
means, once it has found a policy (i.e. a trajectory) that yields reasonable rewards, it
will stick to this policy and not explore other possible trajectories. For high values in the
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(a) Results for runtime Trun=500ms.
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(b) Results for runtime Trun=1000ms.
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(c) Results for runtime Trun=5000ms.
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(d) Results for runtime Trun=10000ms.

Figure 6.5.: Planning results for the evaluation scenario with m = 5 tree search particles,
an observation widening factor kobs = 0.5 and a UCB constant c = 5000.
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parameter c, the planner favors exploration over exploitation. Hence, it always explores
untried actions and trajectories first.

With this in mind, the planning results are now evaluated for different c values, where the
reward constants for velocity and collision served as guideline for initial guesses (see Sec.
5.2.4). In this experiment, the runtime is chosen to be Trun=5s in order to obtain deeper
trees and lower variance in the optimal trajectory. The remaining parameters are given in
Tab. 6.2.

Parameter Value

m 5
c {500, 5000, 10000, 50000}
kobs 0.5
Trun 5s

Table 6.2.: Parameters for exploration constant evaluation.

Results

The results for different exploration constants c are shown in Fig. 6.6. It should be noted,
that finding the optimal parameters in this setting is very difficult, as the planner is based
on many random samples and therefore does not yield the same result for multiple runs.
Hence, the plots in Fig. 6.6 for each c value can be regarded as “one out of many similar”
solutions, that give an intuition about the influence of parameter c on the tree search.

For low values of c such as in Fig. 6.6(a), the resulting search tree is very narrow (but
deep), as the algorithm does not explore many other trajectories once it has found a
collision-free trajectory. Moreover, with this low c, the planner is not able to find an
acceptable approximation of the Q-function (see right plot in Fig. 6.6(a)), as it does not
explore the region with high collision probability well enough.

By increasing c sufficiently (see Fig. 6.6(b) and 6.6(c)), the planner is able to find a better
approximation to the Q-function in high collision probability regions. However, this comes
at the cost of a reduced tree depth.

Even larger c (see Fig. 6.6(d)) do not improve the Q-function approximation as they
lead to an “over-explorative” planner, which is not capable of planning for longer horizons
in limited runtime. However, in case the planner had enough runtime or computational
resources, the generated trajectories would be less conservative (see Fig. 6.6(c) and 6.6(d)).

Based on these observations, one can conclude that the “optimal” c lies in or around the
interval from c=5000 to c=10000 (for the reward parameters chosen as in Tab. A.1) and
that reducing c leads to deeper trees and hence longer planning horizons.

Number of Particles in Tree Search m

Another important and special parameter of the Particle Filter Tree algorithm (see Ch.
4.2) is the number of particles used in the particle sets during tree search m. This pa-
rameter has great influence on the number of sampled episodes (i.e. calls to Simulate())
during tree search, since every episode consists of many particle filter updates. However, it
is known that probability distributions are approximated better with larger particle sets.
Hence, the question that is addressed in this section is whether it is beneficial to use less,
but more accurate episodes to generate an optimal trajectory.

For that, the runtime Trun is chosen to be 1s, as then the impact on computing time for
each episode becomes more obvious. The other parameters are selected according to Tab.
6.3.
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(a) Results for UCB constant c=500.
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(b) Results for UCB constant c=5000.
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(c) Results for UCB constant c=10000.
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(d) Results for UCB constant c=50000.

Figure 6.6.: Planning results for the evaluation scenario with m = 5 tree search particles,
an observation widening factor kobs = 0.5 and a runtime Trun = 5000ms.
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(a) Results for number of search particles m=1.
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(b) Results for number of search particles m=5.

0 200 400 600 800 1000
runtime [ms]

−8

−7

−6

−5

−4

−3

−2

−1

0

Q̂
(b
,a

)

×103 Convergence of Q̂(b, a)

a = −4.5 m
s2

a = −3.0 m
s2

a = −1.5 m
s2

a = 0.0 m
s2

a = 1.5 m
s2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time [s]

0

2

4

6

8

10

ve
lo

ci
ty

[m
/s

]

Sampled Trajectories

0 1 2 3 4 5
time [s]

0

2

4

6

8

10

ve
lo

ci
ty

[m
/s

]

Q̂

−9200

−8200

−7200

−6200

−5200

−4200

−3200

−2200

−1200

−200

Q
-f

u
n

ct
io

n
es

ti
m

at
e

(c) Results for number of search particles m=10.
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(d) Results for number of search particles m=20.

Figure 6.7.: Planning results for the evaluation scenario with a UCB constant c = 5000,
an observation widening factor kobs = 0.5 and a runtime Trun = 1000ms.
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Parameter Value

m {1, 5, 10, 20}
c 5000
kobs 0.5
Trun 1s

Table 6.3.: Parameters for number of search particles evaluation.

Results

The results are depicted in Fig. 6.7, where the number of particles m are in the range
from 1 to 20.

In the extreme case where each particle set is represented by only one particle (Fig. 6.7(a)),
the search tree contains many nodes and is very deep, as more episodes could be sampled
during runtime. As expected, an increase in the particle set size results in fewer episodes
being sampled and hence shorter planning horizons, but a more accurate definition of
the collision region (see Figs. 6.7(c) and 6.7(d)). However, this is likely to be an over-
confident result, as particle sets with sizes of 10 or 20 particles are usually not capable of
approximating the complex probability distributions sufficiently well.

Therefore, it can be concluded that using to many particles is disadvantageous, since
the computational effort for tree search is increasing much faster than the increase in
approximation quality of larger particle sets and that in general it is better to have more
episodes than larger particle sets. However, using more than one particle (but not too
many) yielded better results and can be regarded as good trade-off approximation accuracy
and the number of sampled episodes (see Fig. 6.7(b)). Hence, in this work, a particle set
size around five particles will be used for subsequent experiments.

Progressive Widening of the Observation Space kobs

At last, it should be investigated, whether progressive widening still improves the solution
even though no particles or observations are reused. In Section 4.2 it was explained that
for this algorithm progressive widening might not be beneficial. Hence, in this section, the
influence of progressive widening on the search tree and Q-function estimate is examined.

For this, the results with an observation widening factor kobs = 0.5 are compared with
kobs = 3.0 and kobs = 5.0, where setting kobs < 1 is analog to giving up progressive
widening as in this case (αobs = 0.05) the number of child nodes is always limited to 1 (see
Sec. 3.2.3). The other parameters are chosen according to Tab. 6.4.

Parameter Value

m 5
c 5000
kobs {0.5, 3.0, 5.0}
Trun 1s

Table 6.4.: Parameters for progressive widening evaluation.

Results

The results are shown in Fig. 6.8. It is unambiguous, that applying progressive widening
only deteriorates the solution, as it limits the tree from growing deep (see Figs. 6.8(b) and
6.8(c)). The reason for this is that every action node (Q-node) has several observation



6.3. Solver Parameter Analysis 69

0 200 400 600 800 1000
runtime [ms]

−0.8

−0.6

−0.4

−0.2

0.0

Q̂
(b
,a

)

×104 Convergence of Q̂(b, a)

a = −4.5 m
s2

a = −3.0 m
s2

a = −1.5 m
s2

a = 0.0 m
s2

a = 1.5 m
s2

0 1 2 3
time [s]

0

2

4

6

8

10

ve
lo

ci
ty

[m
/s

]

Sampled Trajectories

0 1 2 3 4 5
time [s]

0

2

4

6

8

10

ve
lo

ci
ty

[m
/s

]

Q̂

−7080

−6480

−5880

−5280

−4680

−4080

−3480

−2880

−2280

−1680

Q
-f

u
n

ct
io

n
es

ti
m

at
e

(a) Results for observation widening factor kobs=0.5.

0 200 400 600 800 1000
runtime [ms]

−0.8

−0.6

−0.4

−0.2

0.0

Q̂
(b
,a

)

×104 Convergence of Q̂(b, a)

a = −4.5 m
s2

a = −3.0 m
s2

a = −1.5 m
s2

a = 0.0 m
s2

a = 1.5 m
s2

0.0 0.5 1.0 1.5 2.0
time [s]

0

2

4

6

8

10

ve
lo

ci
ty

[m
/s

]

Sampled Trajectories

0 1 2 3 4 5
time [s]

0

2

4

6

8

10

ve
lo

ci
ty

[m
/s

]

Q̂

−6360

−5760

−5160

−4560

−3960

−3360

−2760

−2160

−1560

−960

Q
-f

u
n

ct
io

n
es

ti
m

at
e

(b) Results for observation widening factor kobs=3.0.
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(c) Results for observation widening factor kobs=5.0.

Figure 6.8.: Planning results for the evaluation scenario with m = 5 tree search particles,
a UCB constant c = 5000, and a runtime Trun = 1000ms.
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nodes (V-nodes), such that during search there are more observation nodes than action
nodes added to the tree. On each expansion of such a node the recursion of Simulate()
stops and the result are many short episodes.

Thus, the planning algorithm in this work does not use progressive widening.

Summary

In this section, the influence of the parameters runtime Trun, exploration constant c, num-
ber of search particles m and the observation widening factor kobs have been investigated.
Now, the findings are summarized, shortly.

In Fig. 6.5, it could be observed, that the longer the given runtime for the solver is, the
deeper the tree and the better the Q-function estimate becomes. Even though one second
is quite short, it is a reasonable trade-off for the scenario used in this evaluation.

Fig. 6.6 showed, that exploration is computational complex. Hence, when increasing the
UCB exploration constant c the algorithm should also be given more runtime. A good
range to choose the exploration constant from is inside and around the interval Ccoll

2 and
Ccoll. It was also observed, that when runtime is limited, reducing the exploration constant
leads to longer planning horizons.

Based on Fig. 6.7, it can be concluded, that particle sets for tree search should not be
chosen too large as the computational effort increases quickly. However, using more than
one particle was observed to be beneficial and a particle set size around five particles was
a good trade-off.

As a last result, it turned out that progressive widening on the observation space impairs
the planning algorithm (see Fig. 6.8). Therefore, progressive widening is not employed in
the PFT algorithm in this work.

To conclude this section with the objective from the beginning, it is possible to find a good
parameter set for this algorithm to be applied in a near real-time setting with a runtime
limited to 1s, such that it still finds feasible solutions to the motion planning problem.

6.4. Model Parameter Analysis

The parameter analysis in the previous section was based on theoretical considerations
and focused on important solver parameters, that turned out to have great influence on
the planned trajectory. In this section, the analysis is dedicated to the automated driving
domain as the influence of POMDP model parameters on the search tree and the Q-function
estimate is examined.

Based on the findings of the previous section, the solver parameters for the subsequent
experiments are chosen according to Tab. 6.5. The number of particles m and the explo-
ration constant c are slightly reduced in order to obtain trajectories for longer horizons
and, as noted before, no observation widening is applied. Finally, the runtime is limited
to 1s.

Parameter Value

m 3
c 4000
kobs 0.5
Trun 1s

Table 6.5.: Solver parameters for POMDP model parameter evaluation.
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IDM Reference Velocity of Other Vehicle vref,k

The model parameter analysis focuses on parameters of the intelligent driver model, which
is used in the transition model of the POMDP to model the behavior of other vehicles. As
noted in Section 5.2.2, the reference velocity vref,k has a major impact on other vehicles’
behavior. Therefore, this parameter will be subject of evaluation in this section.

The evaluation (Fig. 6.9) is conducted analog to the previous section, where three plots
were analyzed for every parameter combination:

The center and the right plots are equivalent to the previous section (Sec. 6.3). The left
plot shows the predicted particles on the planned trajectory after a time horizon of 3s -
that time, where the collision occurred in the evaluation scenario. Analog to the previous
section, the driving scenario is taken from DR_DEU_Roundabout_OF at timestamp 146000

as given in Fig. 6.4(a). Additionally, the ground truth position of the ego vehicle and the
other vehicle after 3s is depicted for comparison to the prediction of the planner in high
transparency.

Using the parameter set from Tab. 6.5, the reference velocity for the ego vehicle is set to
vref,ego = 6ms , such that it is encouraged to drive at constant speed. Then, the desired
velocity vref,k is varied and the values are chosen from the set {3.5, 4.0, 7.0, 10.0}ms , where
vref,k = 7.0ms was used for the experiments in the previous section (Sec. 6.3). The true
parameter of vehicle ID60 lies in between 4 and 5ms as it drives with speeds in this range
between t = 146.0s and t = 149.0 in the data set.

Parameter Value

vref,ego 6.0ms
vref,k {3.5, 4.0, 7.0, 10.0}ms

Table 6.6.: Parameters for POMDP model evaluation.

Results

The results are depicted in Fig. 6.9. The Q-function approximations in the right plots
demonstrate the soundness of the POMDP planner. If the planner assumes that the other
vehicle will slow down (vref,k low, see Figs. 6.9(a) and 6.9(b)), the region of high collision

probability is at lower speeds in the time-velocity diagram of Q̂ (red regions in the right
plots). Conversely, if the ego vehicle expects the other vehicle to speed up the region of
high collision probability is at higher ego vehicle velocities, as vehicle ID60 might already
have passed the entry to the roundabout when the ego vehicles arrives there (see Figs.
6.9(c) and 6.9(d)). In all cases, the planned trajectory (blue line in the center and right
plots) is evidently influenced by the predicted collision region.

Moreover, the predicted particle positions of the ego vehicle (black particles) and the
other vehicle (colored particles) are consistent with the planned velocity profile and the
parameter vref,k, respectively (see left plots in Fig. 6.9).

An interesting observation can be made in transition from vref,k = 3.5ms to vref,k = 4.0ms ,
as for these to values the planner finds trajectories from different homotopy classes. In
the first case (depicted in Fig. 6.9(a)), the planner expects vehicle ID60 slowing down
strongly and plans a (rather aggressive) trajectory for entering the roundabout in front of
the other vehicle. In the latter case (see Fig. 6.9(b)), entering in front of the other vehicle
has a too high collision probability and hence the planner decides to break and yields to
the other vehicle.
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Figure 6.9.: Planning results for the evaluation scenario with m = 3 tree search particles,
a UCB constant c = 4000, and a runtime Trun = 1000ms.
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All in all, it can be concluded that the desired velocity of other vehicles has a great
influence on the Q-function estimate and hence the planned trajectory for the ego vehicle.
This is reasonable, since in general the behavior of the ego vehicle strongly depends on the
behavior of surrounding vehicles. Hence, setting this parameter is a strong assumption
about future behavior of other vehicles, which might be wrong in many cases. Therefore,
the results of these experiments support the idea from Section 5.2.2, to estimate vref,k
for each vehicle Vk from observations and use this estimate for tree search. However,
implementing this idea is left for future work.

Further Experiments

Several other experiments have been conducted with the presented POMDP planner and
some more experiments might be interesting. However, due to time and space limitations,
these experiments and results could not be included in this thesis. Therefore, only the
main ideas and findings are sketched here.

Besides varying the reference velocity of the other vehicles vref,k, the reference velocity of
the ego vehicle, which is used in the reward model (see Sec. 5.2.4), could be changed as
well. In this scenario (Fig. 6.4) it was observed, that even if the vehicle is encouraged to
speed up (for high reference velocities), it slows down to avoid the likely collisions.

Instead of varying the reference velocities, one could also increase the level of uncertainty by
changing the noise parameters in the transition or observation model accordingly. In case of
an increased level of self localization noise for the ego vehicle, the trajectories generated by
the planner have been shown to be more conservative, i.e. the ego vehicle planned stronger
braking maneuvers to reduce the collision probability. Another interesting experiment
would be to vary also the noise of the model for the other vehicles. It is expected, that
this also leads to more conservative trajectories, which has already been demonstrated by
Hubmann et al. [HSB+18].

So far, in this work only single-timestep scenarios have been used for evaluation of the
planner (in contrast to the particle filter). Therefore, in future works the planner should
be evaluated in online open- or closed-loop multi-timestep scenarios, where the other ve-
hicles either behave according to recorded data or are steered by other models or planners
themselves. Then, the POMDP planner could be investigated for model mismatch between
the other drivers and the models used in the transition model. Moreover, the generated
behavior could be directly compared with human behavior from the data set for example.

Finally, to evaluate the full interactive planning potential of the planner, more complex
scenarios with more vehicles must be used. Those experiments would reveal whether the
planner is still able to provide safe motion plans in real-time when the predictions of many
other road users need to be considered.





7. Conclusion and Future Work

After briefly revisiting the motivation and objectives of this work, the contributions and
results are outlined in this chapter. In the end, directions for future research are set out.
These include ideas for improving the POMDP solver as well as the POMDP model with
the overall objective to enhance behavior generation.

7.1. Conclusion

The motivation for this thesis was to consider the uncertainties of the environment in the
domain of automated driving during motion planning, but at the same time avoid the
generation of overly conservative or defensive driving behavior. Therefore, the framework
of Partially Observable Markov Decision Processes (POMDPs) was used to model this kind
of decision problems, as it allows to integrate uncertainties in models, the environment or
future behavior of other agents.

For this reason, the goals were to formulate and implement a POMDP model for the
motion planning problem in urban scenarios and to develop an algorithm which is able to
find a policy for this driving POMDP online in near real-time.

The main contribution of this work is a POMDP motion planner for automated vehicles,
that enhances state of the art POMDP planners by combining weighted particle filters
for state and driver intent estimation with Monte-Carlo tree search for decision-making.
Additionally, a C++ and Python software framework for the Information Particle Filter
Tree algorithm was developed and used for solving the motion planning problem.

The presented POMDP model includes all vehicles (including the ego-vehicle) in a traffic
scene in the state space and models the route intention of the other vehicles as hidden,
unobservable variable. The action space is discretized in a few different equally spaced
acceleration values, which means that the POMDP planner is designed to generate an
optimal acceleration profile along a predefined path for the ego-vehicle. The reward model
encourages the ego vehicle to select accelerations, such that it drives at a desired speed
and avoids collisions with surrounding road users.

In the transition model, the behavior of the other vehicles is modelled by the Intelligent
Driver Model (IDM) with additional random noise to accommodate for different driving
styles. The observations are generated in the observation model from single states with
added observation noise sampled from Gaussian distributions. Additionally, by providing
an explicit observation likelihood model, a weighted particle filter can be used for state
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estimation and belief updating. For this, the route variable is estimated based on features
that combine map information with true or simulated observations of other vehicles. The
so gained knowledge can then be used directly for subsequent planning steps.

The results have shown that in this way the POMDP planner is able to precisely infer
the intentions of other drivers online and that including the heading of other vehicles in
intention estimation is very advantageous.

In the solver parameter study, the influence of the runtime, the exploration constant and
the particle set size used for tree search on planning horizon and solution quality has been
investigated and a parameter combination, such that a trajectory is planned in near real-
time has been found. It was also observed, that in case of limited runtime, reducing the
exploration constant led to longer planning horizons and that the tree search particle set
size should be chosen rather small to allow for the generation of more episodes in each
planning step. Moreover, it turned out that progressive widening should not be used, when
observations are resampled and not reused during tree search.

At last, using these findings, the planner has been examined with respect to changes in the
POMDP model. Here, subject of evaluation was the reference or desired velocity in the
IDM for the other vehicle. The results showed that this parameter had a strong influence
on the trajectory generated by the POMDP planner.

7.2. Future Work

There are several approaches to further improve the POMDP planner presented in this
work. They all aim to either reduce runtime or refine the models used for planning with
the overall goal to generate better, more human alike behavior for the autonomous vehicle.

To begin with, in Section 6.4 it was observed that the behavior and interaction models of
other traffic participants have a strong impact on the ego vehicle’s behavior. This points
out that future work could focus on building or learning models from real traffic data,
that predict human behavior better. Using such improved models would lead to a more
efficient use of samples and hence computational resources for finding an approximation
to the optimal policy.

Another aspect, which could be further improved is the generation of search trees, because
so far, they are built from scratch in every time step. This means that the planner
performs multiple potentially redundant simulations without reusing the results, which is
very inefficient. Hence, future work should reuse parts from search trees over multiple time
steps and refine the solution for the current belief state, respectively.

Finally, the rollout is another starting point for future research. In this work, a simple
constant-velocity rollout policy has been used. By introducing more realistic rollout poli-
cies the initial guess for the Q-values, and probably also the convergence and runtime of
the algorithm would be improved. Another research direction focusing on this aspect is to
learn a Q-function approximation, instead of behavior models, directly from data sets or
from multiple runs of this algorithm. This learned Q-function approximation could then
be used instead of many forward simulations of the rollout policy to provide an initial
guess of the Q-value.



A. Appendix

A.1. Evaluation Parameters
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Parameter Value Unit Description

∆t 0.5 s time step of the discrete motion models

Transition Model
vref,k 7.0 m

s IDM desired/reference velocity of vehicle Vk
δ 4 − IDM free acceleration exponent
T 1.5 s IDM desired time gap
dmin 2.0 m IDM minimum jam distance
amax 0.73 m

s2
IDM maximum acceleration

b 1.67 m
s2

IDM desired deceleration
wlane 4.5 m approximate lanewidth
σIDM 1.5 m

s2
IDM noise std

σx,V0 0.1 m position noise std ego vehicle
σv,V0 0.2 m

s position noise std ego vehicle

Generative Observation Model
σx,Vk 0.5 m position noise std other vehicle
σv,Vk 1.0 m

s velocity noise std other vehicle
σθ,Vk 0.087 rad yaw-angle noise std other vehicle

Observation Likelihood Model
σfl,V0,PF 1.0 m position noise std ego vehicle
σv,V0,PF 0.5 m

s velocity noise std ego vehicle
σfl,Vk,PF 4.0 m position noise std other vehicles
σv,Vk,PF 2.0 m

s velocity noise std other vehicles
σd,PF 0.9 m std of the lateral distance route classifier
σ∆θ,PF 0.175 rad std of the yaw angle deviation route classifier

Reward Model
vref,V0 6.0 m

s constant reference velocity ego vehicle
Cv+ -100 − velocity cost scaling factor v0 > vref

Cv− -150 − velocity cost scaling factor v0 < vref

Cacc -50 − acceleration cost scaling factor
Ccoll -10 000 − collision cost
dsafe,offs 1.5 m collision circle safety distance offset

ath,emergency -7.0 m
s2

emergency braking threshold

Table A.1.: Parameters of the driving POMDP model.

Parameter Value Unit Description

d 10 − maximum search tree depth
Trun 1000 ms search time / runtime per move
m 3 − particle set size in tree search
mPF 5000 − number of particles for the particle filter
kobs 0.5 − progressive widening parameter
αobs 0.05 − progressive widening parameter
γ 0.95 − discount factor
c 4000 − UCB exploration constant

Table A.2.: Solver Parameters of the Particle Filter Tree algorithm.
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A.2. Source Code

The source code developed within this work is distributed across three different packages:

• “IPFT Solver package”: A pure C++ package containing the implementation of the
IPFT algorithm as presented in [FT20].

• “Driving POMDP Planner package”: A C++ package containing the POMDP model
implementation with python bindings as interface to the simulation environment.

• “Python POMDP planner package”: A pure Python package that implements the
simulators interface and calls the Python bindings of the “Driving POMDP Planner
package”. Additionally, this package contains python code for data processing of the
search trees and the plot scripts used to generate the plots for this thesis.

At the time of submission of this thesis the source code is not in a stage to be published.
Hence, the final names have not been determined. As soon as the code is published on
github, a link to the repository will be provided here:

https://github.com/maximilianmbeck

https://github.com/maximilianmbeck
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