Addressing Parameter Choice Issues
in Unsupervised Domain Adaptation
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Introduction 8 TL:DR

 |In Unsupervised Domain Adaptation we have labelled source data {(xiayi)}izl ~ P
 Selecting hyperparameters

without target labels is hard
Current methods select the
single best model

We compute a linear

and unlabelled target data {:U; le ~ qx

« Thegoalistolearnamodel f: X —Y C R? with small target error
gq(f) = fXx}fo(x) — y\l% dg(z,y)

* Problem: How do we choose hyperparameters
(e.g., learning rate or regularization parameters) without target labels?

State of the Art
e Step 1: Compute different models f1, ..

aggregation of all models
by importance weighted
least squares

We give target error
guarantees for the linear
aggregation

. fm + X = Y by running the learning
algorithm with different hyperparameters.

- Step 2: Select the model 5! := argmin &, (f) with smallest target error

fe{flaafm}

Method: Importance Weighted Linear Aggregation by Least Squares (IWA)

+ |dea: Compute linear aggregation 288 := Zcifi . Tool 2: Importance Weighting for Covariate Shift

i=1 Under covariate shift assumption p(y|z) = q(y|z) and

bounded density ratio A(z) := %9X (z) € [0, B] it holds

such that the target error is minimized:

min &, ( i clfz)
i=1

£, (f*5) = min_ x|
« With this approach the error is smaller than the best single g = (/ (fp(x), fr(x))y B(x) de(:c))
X — k=1

[Shimodaira 2000, Kanamori et al. 2009]

model: £, (f*¢8) < &,(f%)

« We use vector-valued linear least squares to compute the

* Algorithm 1: Importance Weighted Least Squares Linear Aggregation (IWA).

, _ _ _ _ Input :Set f1,..., fm : X = Y of models, s labeled source samples (x,y)
aggregation weights and importance weighting to take the and ¢ unlabeled target samples x'.
covariate shift into account Output :Linear aggregation f = Y, | ¢ fi with weights ¢ = (¢y,...,¢,,) € R™,

Step 1 Use unlabeled samples x and X' to approximate density ratio ggf{ by some function 3(x)

 Tool 1: Vector-Valued Least Squares

T

/ Z c; fz ( :C) o fq ( :L’) d qx ( LL') Step 2 Compute weight vector ¢ = G —1g with empirical Gram matrix G and vector g defined by
X _ 1 t 1 s
i=1 i=1

Return :Linear aggregation f = Y ;" | ¢ fi.

9 using a classical algorithm, e.g. Sugiyama et al. (2012).

88 .= G 'g= argmin

(Cl,...,cm)ERm

m 1

1=1 Y

with Bayes predictor, Gram matrix

fq(w)zfyydq(yfc) G_</ (fk(x),fu(a:)>ydqx(:c)>

X k,u=1
g Vector\\lot computable! .

o= ([ [} sy dax))

ku=1 k=1

m

Theorem 1. With probability 1 — 0 it holds that

Ry(F) = Ralh) 2Ry (77) = Ro(2) + € (1055 ) (577 47

k=1 for some coefficient C > 0 not depending on s,t and 0, and sufficiently large s and t.
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Results and Analysis T —
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« We perform experiments on 6 * |n contrast to the other heuristic aggregation
0.8

baselines, the aggregation weights of our
Mmethod tend to be larger for accurate models

benchmark datasets containing image,
text and time series.
e For each dataset we use 12 domain

Accuracy
o
~

IWA SOR TCR TMR 0.61
adaptation methods and 6 parameter B~ i
choice baselines (theoretically 052““
motivated and heuristic), which results S« pot m/m ——
in training about 16,000 models. ] g I. l i ‘
 We significantly outperform T oottt carston oo comon ot consioncoatcm: . BE 01 ' I- il oal || I 1 omoa
theoretically motivated model selection Histogram of the correlation coefficients of IWA and the linear i - I
methods and beat each heuristic on at regression heuristic baselines SOR, TCR and TMR over all datasets. < " sequence of Individual Models

IWA shows a stronger positive correlation between a model’s
target accuracy and its aggregation weight.

Top: Mean classification accuracy over 3 seeds.
Bottom: Scaled aggregation weights for
individual models. IWA effectively uses all
models in the sequence.

least 5 of / datsets

| Heuristic | Theoretical error guarantees |

1

Dataset SO | TMV TMR TCR SOR WV DEV IWA (ours) | TB

Transformed Moons  0.989(+0.008) | 0.980(+0.006)  0.981(+0.007) 0.997(+0.002)  0.989(0.010) | 0.989(+0.008) 0.981(+0.022) 0.997(+0.002) | 0.997(+0.005)

Amazon Reviews  0.767(£0.011) | 0.787(£0.009)  0.786(£0.010)  0.786(£0.010)  0.789(£0.010) | 0.772(£0.014) 0.764(£0.019) 0.788(£0.009) | 0.781(+0.012) .
MiniDomainNet 0.507(+0.022) | 0.526(+0.011) 0.525(+0.014)  0.526(+0.013)  0.518(£0.012) | 0.513(£0.022) 0.515(+0.028) 0.531(+0.011) | 0.534(=0.022) beck@ml.jku.at
Sleep-EDF 0.655(£0.054) | 0.729(£0.018) 0.729(£0.024)  0.725(£0.023)  0.717(£0.028) | 0.700(£0.052) 0.660(+£0.057) 0.737(+0.020) | 0.712(-£0.045)

UCI-HAR 0.770(£0.046) | 0.840(£0.017) 0.833(£0.023)  0.832(£0.024)  0.769(£0.060) | 0.774(+£0.070) 0.765(+0.090) 0.835(+0.020) | 0.850(-0.029) beck
HHAR 0.732(+0.042) | 0.771(£0.015)  0.768(:0.017) 0.771(£0.018) 0.722(+0.068) | 0.746(+0.037) 0.722(+£0.063) 0.787(+0.012) | 0.784(=0.028) y MaxXmpecC

WISDM 0.736(£0.050) | 0.768(£0.027) 0.768(£0.036)  0.765(£0.037)  0.737(£0.062) | 0.736(£0.052) 0.726(+£0.077) 0.764(+0.025) | 0.771(-£0.046)

Avg. target accuracies and standard deviations over several domain adaptation tasks (e.g., 5 on HHAR, 5 on
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MiniDomainNet, 12 on Amazon Reviews), 11 domain adaptation methods (e.g., DANN, CMD, MMD) and 3 seeds.

2 Dynatrace Research

4 Software Competence Center
Hagenberg

[\ Paper: arxiv.org/abs/2305.01281
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