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• Transfer Learning: Setting and Challenges

• Empirical findings about loss landscapes 

• Our approach: 

Use loss landscape information for improved fine-tuning
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• Standard Approaches:

◦ Fine-tuning: Gradient descent on all network parameters

◦ Linear Probing: Tuning the head but freezing lower layers

• Challenges:

◦ Distribution shift between source and target distributions [Koh et al., 2022]

◦ Spurious correlations in training datasets [Kirichenko et al. 2022]

◦ Fine-tuning can distort pre-trained features [Kumar et al. 2022]
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• Recently proposed approaches:

◦ LP-FT: First Linear Probing then full Fine-tuning [Kumar et al., 2022] 

◦ Surgical fine-tuning: Fine-tuning only a small contiguous subset of all 

layers [Lee et al., 2022]

◦ Deep feature reweighting: Last-layer retraining on a small dataset 

without any spurious correlations [Kirichenko et al., 2022]

These methods add to a growing evidence in the literature that 

lightweight fine-tuning, where only a small part of a pre-trained 

model are updated, can perform better under distribution shifts.

Bottom line:
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Visualization of the 

loss landscape

Li et al., 2018

Interpolation between 

initial and final model 

states

Interpolation between 

different optima

Vlaar and Frankle, 2022 Garipov et al., 2018

Focus in this talk!
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• Goal: 

Determine whether the outcome of optimizing 

a particular network N is stable to SGD noise

• Procedure:

◦ Make two copies of N and train them with 

different random samples of SGD noise

◦ Compare these weights with a function to 

produce a value called instability of N

• Linear interpolation instability:

Maximum increase in error along linear 

interpolation path between WT
1 and WT

2

Outcome for MNIST, CIFAR10, ImageNet: 

All but the smallest MNIST networks are 

unstable at initialization. 

By a point early in training all networks 

become stable to SGD noise.

Frankle et al., 2020
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• Similar findings & connections to other papers:

◦ Gradient descent happens in a subspace. [Gur-Ari et al., 2018]

◦ Longer burn-in lowers the number of degrees of freedom 

required to train to a given accuracy. [Larsen et al., 2022]

◦ There exists a “break-even point” on the training trajectory. 

Hyperparameters in the early phase control the mini-batch noise and the local 

curvature of loss surface after this “break-even point”. [Jastrzebski et al., 2020]

Training can be divided in two phases:

• Unstable phase: Network finds linearly 

unconnected minima due to SGD noise

• Stable phase: Linearly connected 

minimum is determined

Implications from Instability Analysis

Frankle et al., 2020

Larsen et al., 2022
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• Other observations:

◦ Benefits of transfer learning come not only from feature reuse, but also 

from low-level data statistics. 

◦ Two instances of models trained from the same pre-trained weights 

make more common mistakes.

◦ One can start fine-tuning from earlier pre-training checkpoints without 

loosing accuracy in the target domain.

When training from pre-trained weights, the model stays in the 

same basin in the loss landscape and different instances of such 

model are similar in feature space and close in parameter space.
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Transfer Learning

Problem setting:

Lightweight fine-tuning 

can perform better 

under distribution shift

Loss basin view on SGD

Conceptual model:

Training consists of a 

stable and unstable phase;

fine-tuning stays in same basin

New Methods

Possible contribution(s):

Improved fine-tuning 

New Insights

Loss landscape 

under distribution shift
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• Can we find subnetworks based on 

local loss surface information for 

better fine-tuning?

• Can we adapt a model inside a 

basin, i.e. use basin information as a 

type of regularization? 

• Do pre-trained weights fit to the 

target distribution?

• When does “staying in the basin” 

break? 

e.g. in Meta-Learning setting

New Methods New Insights
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• Fine-tuning only a small part of the model can perform better under 

distribution shift

• Fine-tuning stays within the same loss basin

• We want to use insights on the loss landscape for transfer learning

• Discuss and send papers! ☺
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Neyshabur et al., 2020

Explanation:

1. Most points in the basin have a loss close to expected value of the loss in the basin.

2.-3. Loss of points in the vicinity of the basin is higher than the expected loss in the basin.   

3 requirements 

for a convex set 

to be a basin
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