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Motivation

® Motivation for using POMDPs
(Partially Observable Markov Decision Processes).

® Plan with uncertain knowledge about environment
® Combined prediction and planning

® Drawbacks:
® Computational complex

| Goal:
® Find an optimal acceleration profile for the
ego vehicle
Introduction POMDPs in Automated Driving PFT Algorithm
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C. Hubmann, et al., ,Automated driving in uncertain environments:
Planning w ith interaction and uncertain maneuver prediction”, 2018.
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POMDPs

® Defined by the 7-tuple (S, A, 7, R, 0, Z,v):
® Action space A, State space S, Observation space O,
® Transition model 7,
® Reward model R,
® Observation model Z, and discount factor 7.

® Value function:  V7(s) =E | Y 'R (s, a1 = W(St))]
t=0

® Optimal policy: 7" = argmax V™ (s)

T
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Graphical model of a POMDP

m Q-function:  Q(st;ar) = Rist,ar) +v Y T(sealse, ar) V¥ (se1), V(st) = max Q(st, ar)

St+1
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® States are not fully observable
® Actions depend on belief state:  a; = 7(b;)

® Belief state depends on action-observation history:
bi(s) = Pr(s; = s|hy, bo)

hy = {agp,01,a1,09,...,a;-1,0:}

® For sequential action selection, belief state must be updated:

o Graphical model of a POMDP
by = T(bt—la at—1, Ot) P

[T is implemented as Particle Filter }

Introduction POMDPs in Automated Driving PFT Algorithm Results Conclusion
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POMDPs in Automated Driving A\‘(IT

1=|| =692
| S
x I X = | v
= 1
51 = 13.70m | T

® State of the Art (C. Hubmann, et al.):
® Static routes are used

Gl_)%

® Vehicle heading is not used for intention estimation,
but is a “strong” feature

® Use of unweighted particle filter
with simple rejection sampling

® Use of Adaptive Belief Tree (ABT) algorithm
® Simulates single particles

® Contribution: o
® Support changes in environment model Visualization of the state space
® Weighted particle filtering

C. Hubmann, et al., ,Automated driving in uncertain environments:
Planning w ith interaction and uncertain maneuver prediction”, 2018.
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Driving POMDP Formulation (S,4,7,R,0, Z,~) ‘(IT

B State space includes all Ny, vehicles from a scene:

Xk
_ T X0
St = (SVo,t»SVA,ts-+ - » SV, ,t) S sy, = | vp
A\ y 0 ,UU ’ k y

® Observation space:

Xk Visualization of the state space
o T (X0 S
ot = (OV{),i: 0V1,ta s ;OVNV,t) , oy, — v oy, = k ,
0 Uk

® Action set:

m

A={-4.5,-3.0,-1.5,0.0,1.5} =

52
Introduction POMDPs in Automated Driving PFT Algorithm Results Conclusion
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Driving POMDP Formulation (S,4,7,R,0, Z,~) A\‘(IT

® Transition model 7 : ’
® 1D constant-acceleration model:

a1\ (1 A\ (L T(At)?
(o) = (0 3 ()= () o

® Intelligent Driver Model with additive noise for other vehicles
® |nteraction with the ego-vehicle is considered
® Route of other vehiclesdoes not change: 1., =1;

Graphical model of a POMDP

® Reward model: R(S¢,at, 5i+1) = Ryel(Svyt) + Race(ar) + Reon(Se, at,y Si41)

Introduction POMDPs in Automated Driving PFT Algorithm Results Conclusion
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Particle Filter Tree Algorithm ﬂ(".

Karlsruhe Institute of Technology

al® = ﬂ'(i)to) = arg max @(Bto, a) State
acA

0s M 1s Estimation
time

1 »

o't = 7(b, a0, 0)

® Particle filter update in tree search:
7/ 7 /
by, = T(bm, a2,0')

® Action selectionwith UCB

Tree
Search ® Observation generation:
expand S~ bm
i /
Planning s' ~T(s,a)
horizon v
o A o ~ Z(|)
Introduction POMDPs in Automated Driving PFT Algorithm Results Conclusion
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Results

@ Scenarios from INTERACTION-Dataset

® Driver Intent Estimation (State Estimation)
® Multiple time steps

® POMDP Planner (Tree Search)
® Multiple time steps
® Single time step
® Influence of IDM parameter v, x

Introduction POMDPs in Automated Driving PFT Algorithm
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Zhan, Wei, et al. “Interaction dataset: Aninternational, adversarial and cooperative
motion datasetin interactive driving scenarios w ith semantic maps.” 2019.
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Driver Intent Estimation
® Evaluation in roundabout scenario

® Different route options:
® [eft-turn (Route 0)
® Right-turn (Route 1)

@ Different feature combinations:

® vehicle heading (yaw-angle 6)
+ lateral distance to route-centerline

® only lateral distance to route-centerline

Introduction POMDPs in Automated Driving PFT Algorithm
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Driver Intent Estimation — Left-turn
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Driver Intent Estimation — Left-turn
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POMDP Planner — Scenario

® Evaluation in roundabout scenario
® [nitial velocities:
® Ego Vehicle (blue): Vo = 6?
® Other Vehicle (green): v, = 5%
® Approx. time-to-collision: 3s
® Route intention unclear

® Reference velocities:

® Ego Vehicle (blue): Vye = %

u Other Vehicle (green):  vyerx = 4?
Introduction POMDPs in Automated Driving PFT Algorithm
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POMDP Planner — Scenario
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POMDP Planner Evaluation — Multiple Timesteps
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POMDP Planner — Single Timestep

Predicted particles after 3.0s
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(b) Results for IDM reference velocity vyefr = 4.07.
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POMDP Planner — IDM parameter v,..¢

Predicted particles after 3.0s

Predicted particles after 3.0s
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Conclusion & Future work A\‘(IT

® Conclusion:
® Weighted PF precisely estimates route intentions
® POMDP Planner plans collision-free trajectories for long horizons in near real-time
® Behavior model of other vehicles has big influence on trajectory

® Future work:
® Estimate v,.r, as well
® Use more sophisticated interaction and behavior models for other vehicles
® Avoid replanning from scratch
® Use learning to improve rollout and to reduce runtime

Introduction POMDPs in Automated Driving PFT Algorithm esults Conclusion
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