

Motion Planning for Automated Vehicles in Uncertain Environments

Maximilian Beck

Institute of Measurement and Control Systems

KIT – The Research University in the Helmholtz Association

Outline

- **Introduction** m.
	- **Motivation**
	- **POMDPs**
- **POMDPs in Automated Driving**
	- State of the Art
	- **POMDP Model in this work**
- **Particle Filter Tree (PFT) Algorithm**
- **Results**
	- **Driver Intent Estimation**
	- **POMDP Planner**

Conclusion & Future Work

Motivation

Motivation for using POMDPs (Partially Observable Markov Decision Processes): **Plan with uncertain knowledge about environment**

- **Combined prediction and planning**
- Drawbacks:
	- **Computational complex**

Goal:

Find an optimal acceleration profile for the ego vehicle

Motion Planning for Automated Vehicles in Uncertain Environments – Maximilian Beck

C. Hubmann, et al., "Automated driving in uncertain environments: Planning w ith interaction and uncertain maneuver prediction", 2018.

24 March 2024 **3** Introduction POMDPs in Automated Driving PFT Algorithm Results Conclusion

POMDPs

- Defined by the 7-tuple $(\mathbb{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \mathbb{O}, \mathcal{Z}, \gamma)$:
	- Action space $\mathcal A$, State space $\mathbb S$, Observation space $\mathbb O$,

 π

- **Transition model** \mathcal{T} **,**
- Reward model \mathcal{R} ,
- \blacksquare Observation model \mathcal{Z}_n and discount factor γ .

\n- Value function:
$$
V^{\pi}(s) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t \mathcal{R} \left(s_t, a_t = \pi(s_t) \right) \right]
$$
\n- Optimal policy: $\pi^* = \arg \max V^{\pi}(s)$
\n

Graphical model of a POMDP

24 March 2024 **4**

$$
\textcolor{red}{\bullet \textbf{Q-function:}} \quad Q(s_t, a_t) = \mathcal{R}(s_t, a_t) + \gamma \sum_{s_{t+1}} \mathcal{T}(s_{t+1} | s_t, a_t) V^*(s_{t+1}), \ \ V(s_t) = \max_{a_t} Q(s_t, a_t)
$$

Motion Planning for Automated Vehicles in Uncertain Environments – Maximilian Beck Introduction POMDPs in Automated Driving PFT Algorithm Results Conclusion

POMDPs

- States are not fully observable
- Actions depend on belief state: $a_t = \pi(b_t)$

Belief state depends on action-observation history:

$$
b_t(s) = \Pr(s_t = s | h_t, b_0)
$$

$$
h_t = \{a_0, o_1, a_1, o_2, \dots, a_{t-1}, o_t\}
$$

For sequential action selection, belief state must be updated:

 $b_t = \tau(b_{t-1}, a_{t-1}, o_t)$

 τ is implemented as Particle Filter

Motion Planning for Automated Vehicles in Uncertain Environments – Maximilian Beck

Graphical model of a POMDP

Introduction POMDPs in Automated Driving PFT Algorithm Results Conclusion

24 March 2024 **5**

POMDPs in Automated Driving

- State of the Art (C. Hubmann, et al.):
	- Static routes are used
	- Vehicle heading is not used for intention estimation, but is a "strong" feature
	- **Use of unweighted particle filter** with simple rejection sampling
	- Use of Adaptive Belief Tree (ABT) algorithm Simulates single particles
- Contribution:
	- Support changes in environment model
	- Weighted particle filtering

C. Hubmann, et al., "Automated driving in uncertain environments: Planning w ith interaction and uncertain maneuver prediction", 2018.

24 March 2024 **6**

Driving POMDP Formulation $(S, A, T, R, \mathbb{O}, \mathcal{Z}, \gamma)$

State space includes all $N_{\mathcal{V}}$ vehicles from a scene:

 $s_t = (\mathbf{s}_{V_0,t}, \mathbf{s}_{V_1,t}, \dots, \mathbf{s}_{V_{N_\mathcal{V}},t})^\top, \qquad \mathbf{s}_{V_0} = \begin{pmatrix} \mathbf{x}_0 \ v_0 \end{pmatrix}\!, \quad \mathbf{s}_{V_k} = \begin{pmatrix} \mathbf{x}_k \ v_k \end{pmatrix}\!,$

ig $\mathbf{x}_k \in \mathbb{R}^2$ is the cartesian position in Cartesian coordinate system $\overline{\mathcal{O}}$

Observation space:

$$
o_t = (\mathbf{o}_{V_0,t}, \mathbf{o}_{V_1,t}, \dots, \mathbf{o}_{V_{N_\mathcal{V}},t})^\top \quad , \quad \mathbf{o}_{V_0} = \begin{pmatrix} \mathbf{x}_0 \\ v_0 \end{pmatrix} \quad \mathbf{o}_{V_k} = \begin{pmatrix} \mathbf{x}_k \\ \theta_k \\ v_k \end{pmatrix},
$$

Visualization of the state space

 $r_{1} = 1$

(2)

 $\frac{(0)}{(1)}$

 \mathcal{X}

 $\mathcal{X}_0 = \begin{pmatrix} s_0 \\ v_0 \end{pmatrix}$

 $\sqrt{2}$

 \mathcal{Y}

Action set:

$$
\mathcal{A} = \{-4.5, -3.0, -1.5, 0.0, 1.5\} \frac{m}{s^2}
$$

Motion Planning for Automated Vehicles in Uncertain Environments – Maximilian Beck

Driving POMDP Formulation $(S, A, T, R, \mathbb{O}, \mathcal{Z}, \gamma)$

Transition model \mathcal{T} :

1D constant-acceleration model:

$$
\begin{pmatrix} l_{t+1} \\ v_{t+1} \end{pmatrix} = \begin{pmatrix} 1 & \Delta t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} l_t \\ v_t \end{pmatrix} + \begin{pmatrix} \frac{1}{2} (\Delta t)^2 \\ \Delta t \end{pmatrix} a_{t, V_k}
$$

Intelligent Driver Model with additive noise for other vehicles

- Interaction with the ego-vehicle is considered
- Route of other vehicles does not change: $r_{t+1} = r_t$

Graphical model of a POMDP

Reward model:
$$
\mathcal{R}(s_t, a_t, s_{t+1}) = R_{\text{vel}}(\mathbf{s}_{V_0,t}) + R_{\text{acc}}(a_t) + R_{\text{coll}}(s_t, a_t, s_{t+1})
$$

Motion Planning for Automated Vehicles in Uncertain Environments – Maximilian Beck Introduction POMDPs in Automated Driving PFT Algorithm Conclusion

24 March 2024 **8**

Results
00000000

Results

- Scenarios from INTERACTION-Dataset
- **Driver Intent Estimation (State Estimation)**
	- Multiple time steps
- **POMDP Planner** (Tree Search)
	- Multiple time steps
	- **Single time step**
	- Influence of IDM parameter $v_{ref,k}$

Motion Planning for Automated Vehicles in Uncertain Environments – Maximilian Beck

24 March 2024 **10**

INTERACTION-Dataset Visualization

Zhan, Wei, et al. "Interaction dataset: An international, adversarial and cooperative motion dataset in interactive driving scenarios w ith semantic maps."2019.

Introduction POMDPs in Automated Driving PFT Algorithm Results Conclusion

Driver Intent Estimation

- Evaluation in roundabout scenario
- **Different route options:**
	- **Left-turn (Route 0)**
	- Right-turn (Route 1)
- Different feature combinations:
	- u vehicle heading (yaw-angle θ) + lateral distance to route-centerline

Motion Planning for Automated Vehicles in Uncertain Environments – Maximilian Beck

only lateral distance to route-centerline

Karlsruhe Institute of Technology $t=147.2$ s (with θ feature)

Driver Intent Estimation – Left-turn

Driver Intent Estimation – Left-turn

Motion Planning for Automated Vehicles in Uncertain Environments – Maximilian Beck 24 March 2004 **13** March 2024 **13**

POMDP Planner – Scenario

- Evaluation in roundabout scenario Initial velocities:
	- **Ego Vehicle (blue):** \boldsymbol{m} \mathcal{S}_{0}

 \boldsymbol{m} \mathcal{S}_{0}

> \boldsymbol{m} \mathcal{S}_{0}

 \boldsymbol{m} \mathcal{S}_{0}

- Other Vehicle (green):
- **Approx. time-to-collision: 3s Route intention unclear**
- Reference velocities:
	- **Ego Vehicle (blue):**
	- Other Vehicle (green):

Motion Planning for Automated Vehicles in Uncertain Environments – Maximilian Beck

POMDP Planner – Scenario

Motion Planning for Automated Vehicles in Uncertain Environments – Maximilian Beck 24 March 2004 **15** March 2024 **15**

POMDP Planner Evaluation – Multiple Timesteps

POMDP Planner – Single Timestep

(b) Results for IDM reference velocity $v_{ref,k} = 4.0 \frac{m}{s}$.

Motion Planning for Automated Vehicles in Uncertain Environments – Maximilian Beck 24 March 2004 **17** March 2024 **17** Introduction POMDPs in Automated Driving PFT Algorithm Results Conclusion

 \circ

POMDP Planner – IDM parameter $v_{ref,k}$

Conclusion & Future work

Conclusion:

- Weighted PF precisely estimates route intentions
- **POMDP** Planner plans collision-free trajectories for long horizons in near real-time
- Behavior model of other vehicles has big influence on trajectory

Future work:

- **Estimate** $v_{ref,k}$ as well
- Use more sophisticated interaction and behavior models for other vehicles
- **Avoid replanning from scratch**
- Use learning to improve rollout and to reduce runtime

Motion Planning for Automated Vehicles in Uncertain Environments – Maximilian Beck 24 March 2014 **30** March 2024 **30**

Motion Planning for Automated Vehicles in Uncertain Environments – Maximilian Beck 24 March 2024 **31** March 2024 **31**