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Motivation for using POMDPs 
(Partially Observable Markov Decision Processes):

Plan with uncertain knowledge about environment

Combined prediction and planning

Drawbacks:

Computational complex

Goal: 
Find an optimal acceleration profile for the 
ego vehicle
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Motivation

C. Hubmann, et al., „Automated driving in uncertain environments: 

Planning w ith interaction and uncertain maneuver prediction”, 2018.
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Defined by the 7-tuple                                  :

Action space     , State space     , Observation space     ,

Transition model     ,

Reward model      ,

Observation model    ,  and discount factor    .

Value function: 

Optimal policy: 

Q-function:                 , 
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POMDPs

Graphical model of a POMDP
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States are not fully observable

Actions depend on belief state:

Belief state depends on action-observation history:

For sequential action selection, belief state must be updated:
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POMDPs

Graphical model of a POMDP

is implemented as Particle Filter
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State of the Art (C. Hubmann, et al.):
Static routes are used

Vehicle heading is not used for intention estimation, 
but is a “strong” feature

Use of unweighted particle filter 
with simple rejection sampling 

Use of Adaptive Belief Tree (ABT) algorithm
Simulates single particles 

Contribution: 
Support changes in environment model

Weighted particle filtering 
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POMDPs in Automated Driving

Visualization of the state space

𝑟1 = 1
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C. Hubmann, et al., „Automated driving in uncertain environments: 

Planning w ith interaction and uncertain maneuver prediction”, 2018.
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Visualization of the state space

𝑟1 = 1

(0)
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State space includes all       vehicles from a scene:

                                             ,                        ,                      ,

                is the cartesian position in Cartesian coordinate system

Observation space:

                                                ,                     ,                      ,

Action set:
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Driving POMDP Formulation
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Transition model     : 

1D constant-acceleration model:

Intelligent Driver Model with additive noise for other vehicles

Interaction with the ego-vehicle is considered

Route of other vehicles does not change:   𝑟𝑡+1 = 𝑟𝑡

Reward model:
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Driving POMDP Formulation
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Particle Filter Tree Algorithm

time

Planning

horizon

Action selection with UCB

Observation generation:

0 s 1 s

Particle filter update in tree search:

State 

Estimation

Tree

Search
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Scenarios from INTERACTION-Dataset

Driver Intent Estimation (State Estimation)

Multiple time steps

POMDP Planner (Tree Search)

Multiple time steps

Single time step

Influence of IDM parameter 𝑣𝑟𝑒𝑓 ,𝑘
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Results

INTERACTION-Dataset Visualization

Zhan, Wei, et al. “Interaction dataset: An international, adversarial and cooperative 

motion dataset in interactive driving scenarios w ith semantic maps.”2019.
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Evaluation in roundabout scenario

Different route options:

Left-turn (Route 0)

Right-turn (Route 1)

Different feature combinations:

vehicle heading (yaw-angle 𝜃) 
+ lateral distance to route-centerline

only lateral distance to route-centerline
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Driver Intent Estimation

Introduction POMDPs in Automated Driving PFT Algorithm Conclusion

yaw-angle 𝜃 lateral distance

Results
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Driver Intent Estimation – Left-turn 
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Driver Intent Estimation – Left-turn 
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Evaluation in roundabout scenario

Initial velocities:

Ego Vehicle (blue):  𝑣0 = 6
𝑚

𝑠

Other Vehicle (green):  𝑣0 = 5
𝑚

𝑠
 

Approx. time-to-collision: 3𝑠 

Route intention unclear

Reference velocities:

Ego Vehicle (blue): 𝑣𝑟𝑒𝑓 = 6
𝑚

𝑠

Other Vehicle (green): 𝑣𝑟𝑒𝑓 ,𝑘 = 4
𝑚

𝑠
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POMDP Planner – Scenario 
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POMDP Planner – Scenario 
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POMDP Planner Evaluation – Multiple Timesteps
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POMDP Planner – Single Timestep
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POMDP Planner – IDM parameter 𝑣𝑟𝑒𝑓,𝑘

Introduction POMDPs in Automated Driving PFT Algorithm Conclusion

𝑣𝑟𝑒𝑓,𝑘 = 3.5
𝑚

𝑠
𝑣𝑟𝑒𝑓,𝑘 = 4.0

𝑚

𝑠
𝑣𝑟𝑒𝑓,𝑘 = 7.0

𝑚

𝑠
𝑣𝑟𝑒𝑓,𝑘 = 10.0

𝑚

𝑠
Results
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Conclusion:

Weighted PF precisely estimates route intentions

POMDP Planner plans collision-free trajectories for long horizons in near real-time

Behavior model of other vehicles has big influence on trajectory

Future work:

Estimate 𝑣𝑟𝑒𝑓,𝑘  as well 

Use more sophisticated interaction and behavior models for other vehicles

Avoid replanning from scratch

Use learning to improve rollout and to reduce runtime
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Conclusion & Future work
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