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Introduction

« Deep Learning struggles with overfitting in applications where « On unseen test tasks, we restrict gradient descent to the most
data are scarce important PCA directions and scale the directions by their

 With enough data, SGD tends to stay within a low-dimensional elgenvalues:
subspace [Larsen et al., 2021] rotransform transform

« We introduce SubGD, a few-shot learning method that into full space into subspace
leverages these subspaces for few-shot learning 0« 0 — V > ival veﬁ(g)

rescale gradient

Method A - )

« After pre-training, we collect < |{|— © E
fine-tuning trajectories on 0 - s .
training tasks SubGD update rule
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* The SUbGD sgbspace S « To determine the learning rate and the number of update
detemm_ned via t.he auto- >  steps, we perform a grid search on the validation tasks or a
correlation matrix of these ” set of hold-out tasks
trajectories (think of this as a '\/sz « SUbGD can be combined with initialization based methods like
PCA on the uncenterec . foMAML [Finn et al., 2017] and Reptile [Nichol et al., 2018]
trajectories): PCA(=—=)—= 1,2

Results

« SubGD excels if we identify a single, low-dimensional subspace * When we can identify a low-dimensional subspace, SubGD
shared across all tasks iINcreases sample efficiency:

 \We measure the subspace size as the effective rank rroy et al, 20077
of training trajectories
(effective rank is a generalization of matrix rank that accounts
for the variability along the directions)

« Empirically, dynamical systems problems vield very low-
dimensional subspaces, while image classification problems do
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low-dimensional subspaces already Number of vectors Toy example of fine-tuning trajectories
when fine-tuning on training tasks Effective rank of training trajectories on
different Sinusoid task distributions beck@ml.jku.at, gauch@ml.jku.at
« We couple training on different tasks via a shared subspace maxmbeck, martingauch
« We do this by adding a regularization term S(60) to the task loss L7(D,0) (e.g. MSE .
Yy g areg (0) 7(D,0) (eg. MSE) Paper: arxiv.org/abs/2206.03483

that penalizes opening new directions in parameter space during training:

£(D, 9) — E’T(Da 9) T /\S(Q) Blog post: ml-jku.github.io/subgd
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