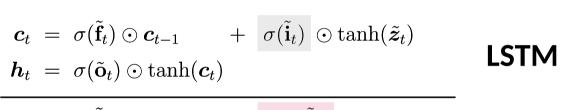


XLSTM

Extended Long Short-Term Memory

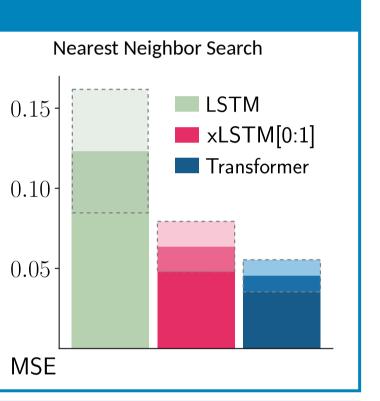
Maximilian Beck*^{1,2,3}, Korbinian Pöppel*^{1,2,3}, Markus Spanring¹, Andreas Auer^{1,2}, Oleksandra Prudnikova Michael Kopp, Günter Klambauer^{1,2,3}, Johannes Brandstetter^{1,2,3}, Sepp Hochreiter^{1,2,3}



Can LSTMs be scaled to billions of parameters while matching Transformer's capabilities?

Limitations of the LSTM:

LSTM's inability to revise storage decisions

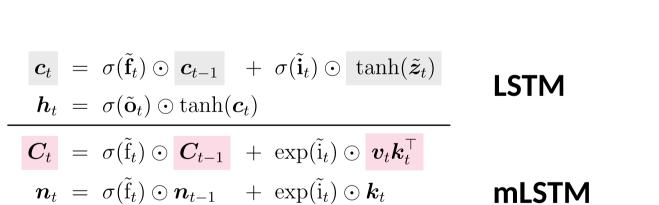

- Sigmoid input gate is limited → cannot overwrite
- Replace by *exponential input gate*
- Introduce normalizer $oldsymbol{n}_t$ to re-stabilize

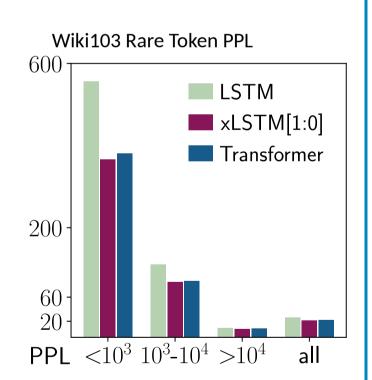
 $oldsymbol{c}_t \ = \ \sigma(ilde{\mathbf{f}}_t) \odot oldsymbol{c}_{t-1}$ $+ \exp(\tilde{\mathbf{i}}_t) \odot \tanh(\tilde{\mathbf{z}}_t)$

 $+ \exp(\tilde{\mathbf{i}}_t)$ $oldsymbol{n}_t \ = \ \sigma(ilde{\mathbf{f}}_t) \odot oldsymbol{n}_{t-1}$

 $\boldsymbol{h}_t = \sigma(\tilde{\mathbf{o}}_t) \odot \boldsymbol{c}_t / \boldsymbol{n}_t$

1) Johannes Kepler University Linz, Institute for Machine Learning 2) NXAI Lab Linz 3) NXAI GmbH

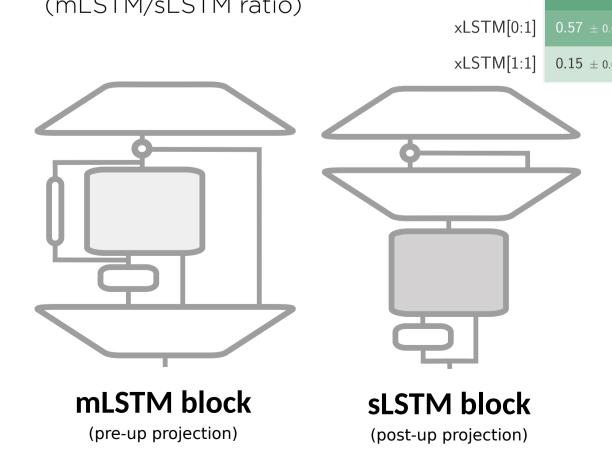

OVERVIEW xLSTM Blocks LSTM Memory Cells xLSTM sLSTM Memory Cells + Exponential Gating → Constant Error Carousel → Sigmoid Gating + New Memory Mixing → Recurrent Inference → Recurrent Training $c_t = f_t c_{t-1} + i_t z_t$ $h_t = o_t \psi(c_t)$ mLSTM + Exponential Gating + Matrix Memory + Parallel Training + Covariance Update Rule



LSTM's limited storage capacity

sLSTM

- Scalar memory cells, each gated → limited capacity
- Now matrix memory cell with outer product update
- Use down-projection to hidden state by query vector

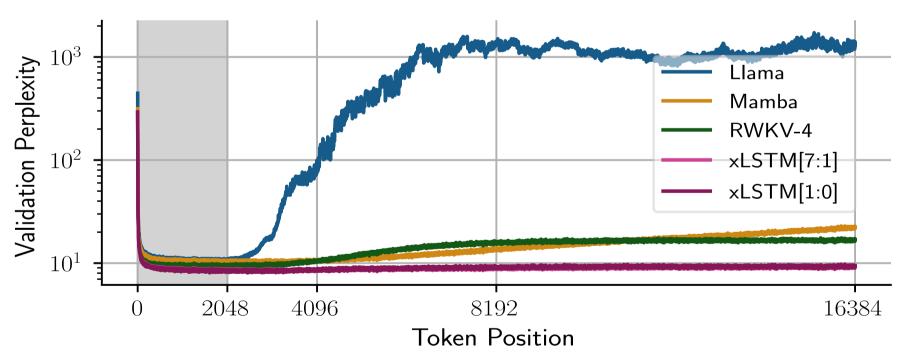


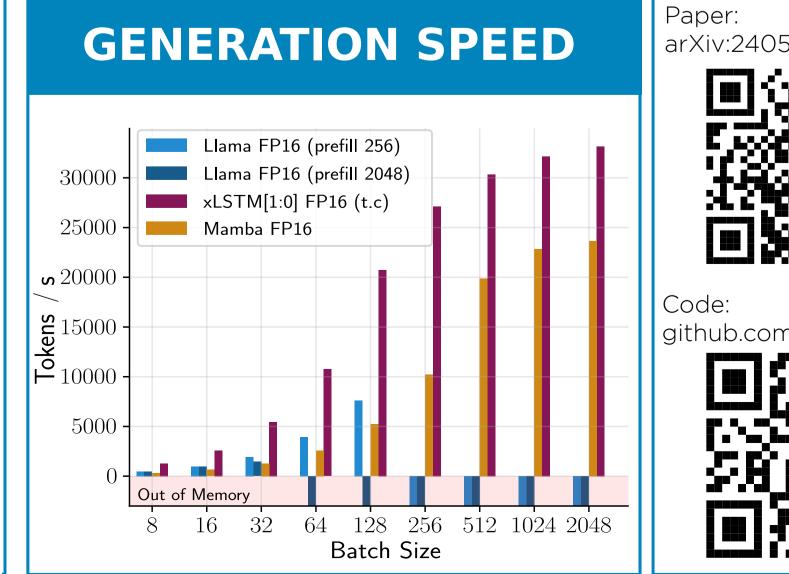
SEQUENCE AND LANGUAGE MODELING

- xLSTM with sLSTM (memory mixing) can solve formal language tasks
- keeps the state tracking capabilities of LSTM

		Context Free		Regular			
 xLSTM Model Structure: ResNet-like architecture of 		Mod Arithmetic (w Brackets)	Solve Equation	Cycle Nav	Even Pairs	Mod Arithmetic (w/o Brackets)	Parity
Pre-Layer-Norm blocks mLSTM (pre-up projection) block sLSTM (post-up projection) block Combination: xLSTM[a:b] (mLSTM/sLSTM ratio)	Llama	$0.02\ \pm\ 0.0$	$0.02\ \pm\ 0.0$	$0.04\ \pm0.01$	$1.0~\pm$ 0.0	$0.03\ \pm\ 0.0$	$0.03\ \pm 0.0$
		$0.04\ \pm0.01$	$0.05\ \pm 0.02$	$0.86\ \pm0.04$	1.0 ± 0.0	$0.05\ \pm0.02$	$0.13\ \pm 0.0$
	RWKV-6	$0.09\ \pm0.01$	$0.09\ \pm0.02$	$0.31\ \pm0.14$	$1.0~\pm$ 0.0	$0.16\ \pm\ 0.0$	$0.22\ \pm0.1$
	LSTM	$0.72\ \pm 0.04$	$0.38\ \pm0.05$	$0.93\ \pm 0.07$	$1.0\ \pm 0.0$	$1.0\ \pm 0.0$	$1.0\ \pm 0.0$
	xLSTM[0:1]	$0.57\ \pm 0.09$	$0.55\ \pm0.09$	1.0 ± 0.0	$1.0\ \pm 0.0$	$1.0\ \pm 0.0$	$1.0\ \pm 0.0$
	xLSTM[1:1]	$0.15\ \pm0.06$	$0.24\ \pm0.04$	0.8 ± 0.03	1.0 ± 0.0	$0.6~\pm 0.4$	$1.0\ \pm 0.0$

- Competitive scores on Multi-Query Associative Recall (memory) and Long-Range Arena (long-range)
- State-of-The Art Language Modeling Perplexity on SlimPajama (15B) at 350M parameter scale
- Downstream Performance on LMEval and PALOMA tasks matches PPL performance gap

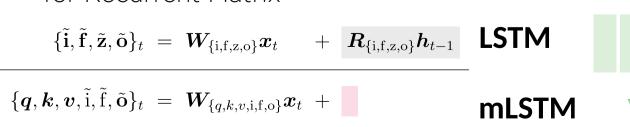

Model	M	$(15B) \text{ ppl} \downarrow$
GPT-3	356	14.26
Llama	407	<u>14.25</u>
H3	420	18.23
Mamba	423	<u>13.70</u>
Hyena	435	17.59
RWKV-4	430	15.62
RWKV-5	456	14.25
RWKV-6	442	15.03
RetNet	431	16.23
HGRN	411	17.59
GLA	412	16.15
HGRN2	411	14.32
xLSTM[1:0]	409	13.43
xLSTM[7:1]	408	13.48


#Params

Model

SlimPajama

LENGTH EXTRAPOLATION



LSTM's inability of time-parallel training

- Recurrent connection limits parallelizability Remove recurrent connection
- Or: Block-diagonal / multi-head structure for Recurrent Matrix

 $\{ ilde{\mathbf{i}}, ilde{\mathbf{f}}, ilde{\mathbf{z}}, ilde{\mathbf{o}}\}_t \ = \ oldsymbol{W}_{\{ ext{i}, ext{f}, ext{z}, ext{o}\}}oldsymbol{x}_t \ + \ oldsymbol{R}_{\{ ext{i}, ext{f}, ext{z}, ext{o}\}}oldsymbol{h}_{t-1} \quad extstacks extbf{STM}$

 $\tilde{i}, \tilde{f}, \tilde{o} \in \mathbb{R}^d \text{ or } \mathbb{R} \text{ input / forget / output gate preactivation} \quad \boldsymbol{c}_t \in \mathbb{R}^d, \boldsymbol{C}_t \in \mathbb{R}^{d \times d} \text{ cell state}$ $oldsymbol{W}_{\{i,f,z,o,q,k,v\}} \in \mathbb{R}^{d imes d}$ weight matrix

 $\boldsymbol{h}_t = \mathbf{o}_t \odot \boldsymbol{C}_t \boldsymbol{q}_t / \max(|\boldsymbol{n}_t^{\top} \boldsymbol{q}_t|, 1)$

Rearranged and time-parallel: