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TL;DR: We combine Flash Linear Attention with Flash Attention 2

Motivation
Gated Linear RNNs become competitive on language modeling: 
RetNet, Mamba, GLA, xLSTM/mLSTM 

•

Linear RNNs have a chunkwise formulation which computes 
intermediate memory states and enables efficient implementations

•

scales linearly with sequence length

FLA kernels leverage the chunkwise formulation 
and are faster than Flash Attention kernels

BUT: FLA is limited in the chunksize by available SRAM on the GPU

Many memory states are materialized in memory, which
causes high memory usage & IO and low arithmetic intensity

•

•

Chunkwise-parallel formulation in 4 parts
Chunkwise Gates: Inter-Chunk Recurrence:

Intra-Chunk Parallel: Output Combination:

Background: Linear RNN Formulations
Recurrent:

Chunkwise-parallel:

Parallel:

C state in every time step
Linear compute

C state every L-th time step
Linear compute

No C states
Quadratic compute!

•
•

•
•

•
•

between recurrent and parallel

TFLA Forward Pass Tiling
Simplified form of the parallel intra-chunk forward pass for chunk   :

chunk size dimensions head dimensions

hidden-query hidden-value

key-value query-key

We parallelize along

We loop over

We apply TFLA to 2 mLSTM variants

mLSTMsig

Exponential input gate 

Additional max and normalizer 
state for stabilization

Tested at 7B parameter scales

•
•

•

Sigmoid input gate

No max and normalizer state

Less FLOPS & faster kernels

Equal performance up to 
1.3B parameters

•
•
•
•

TFLA Kernels Overview

Tiling along the chunk 
dimension L 
enables arbitrary large 
chunk sizes!

TFLA divides the inuts into 
chunks of size L
(1st level of of sequence 
parallelism)

The recurrent kernel 
materializes the (first) 
memory state for each chunk

TFLA parallelizes along the 
chunk dimension L
(2nd level of sequence 
paralellism)

•

•

•

Paper Code

Chunk size is more than a kernel parameter

...enables trade-off between memory & runtime

...interpolates the FLOPs between recurrent and parallel formulation
...determines the arithmetic intensity (i.e. compute vs. memory bound)

The chunk size...

Runtime vs. Memory Trade-off Theoretical Runtime

Benchmark Results
Constant number of 65k tokens with embedding dim 4096

TFLA mLSTM kernels are faster than FA3 & 2x faster than Mamba 2
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